Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.444
Filter
1.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691303

ABSTRACT

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Carotid Artery Injuries , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental , Membrane Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Rats, Sprague-Dawley , Signal Transduction , Animals , ADAM10 Protein/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/enzymology , Cell Movement/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/enzymology , Cell Proliferation/drug effects , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Amyloid Precursor Protein Secretases/metabolism , Cells, Cultured , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/enzymology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Hyperplasia , Receptors, Notch/metabolism , Receptor, Notch1/metabolism , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Disease Models, Animal , Rats , Coronary Restenosis/pathology , Coronary Restenosis/etiology , Coronary Restenosis/metabolism , Coronary Restenosis/prevention & control
2.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727271

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.


Subject(s)
Angiotensin II , Aortic Aneurysm, Thoracic , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 4 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , Bone Morphogenetic Protein 4/metabolism , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/genetics , Mice , Bone Morphogenetic Protein 2/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Angiotensin II/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Mice, Inbred C57BL , Male , Apoptosis/drug effects , Disease Models, Animal
3.
Nat Commun ; 15(1): 3743, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702316

ABSTRACT

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


Subject(s)
HSP90 Heat-Shock Proteins , Hyperplasia , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Neointima , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Animals , Humans , Male , Mice , Arteriovenous Fistula/metabolism , Arteriovenous Fistula/genetics , Arteriovenous Fistula/pathology , Cell Proliferation , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Neointima/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
4.
Sci Transl Med ; 16(746): eadg6298, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718134

ABSTRACT

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.


Subject(s)
Blood Vessel Prosthesis , Collagen , Induced Pluripotent Stem Cells , Receptor, Transforming Growth Factor-beta Type I , Animals , Humans , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Induced Pluripotent Stem Cells/metabolism , Collagen/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats, Nude , Disease Models, Animal , Rats , Bioengineering , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Gene Editing , Loeys-Dietz Syndrome/genetics , Loeys-Dietz Syndrome/pathology , Male
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723872

ABSTRACT

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Apoptosis , Muscle, Smooth, Vascular , Quercetin , Animals , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/drug therapy , Angiotensin II/pharmacology , Mice , Quercetin/analogs & derivatives , Quercetin/pharmacology , Apoptosis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Disease Models, Animal , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Glycogen Synthase Kinase 3 beta/metabolism , Signal Transduction/drug effects , Cells, Cultured , Cell Nucleus/metabolism , Cell Nucleus/drug effects
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1379-1392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695167

ABSTRACT

BACKGROUND: Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions is the global leading cause of death. The most common and effective means to reduce these major adverse cardiovascular events, including myocardial infarction and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, we know little regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. METHODS: Smooth muscle cell lineage-tracing Apoe-/- mice were fed a high-cholesterol Western diet for 18 weeks and then a zero-cholesterol standard laboratory diet for 12 weeks before treating them with an IL (interleukin)-1ß or control antibody for 8 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of smooth muscle cell and other lesion cells by smooth muscle cell lineage tracing combined with single-cell RNA sequencing, cytometry by time-of-flight, and immunostaining plus high-resolution confocal microscopic z-stack analysis. RESULTS: Lipid lowering by switching Apoe-/- mice from a Western diet to a standard laboratory diet reduced LDL cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden, as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1ß antibody treatment after diet-induced reductions in lipids resulted in multiple detrimental changes including increased plaque burden and brachiocephalic artery lesion size, as well as increasedintraplaque hemorrhage, necrotic core area, and senescence as compared with IgG control antibody-treated mice. Furthermore, IL-1ß antibody treatment upregulated neutrophil degranulation pathways but downregulated smooth muscle cell extracellular matrix pathways likely important for the protective fibrous cap. CONCLUSIONS: Taken together, IL-1ß appears to be required for the maintenance of standard laboratory diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.


Subject(s)
Atherosclerosis , Disease Models, Animal , Interleukin-1beta , Mice, Knockout, ApoE , Myocytes, Smooth Muscle , Plaque, Atherosclerotic , Animals , Interleukin-1beta/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Atherosclerosis/genetics , Mice , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Diet, Western , Mice, Inbred C57BL , Aorta/pathology , Aorta/metabolism , Aorta/drug effects , Aortic Diseases/pathology , Aortic Diseases/prevention & control , Aortic Diseases/genetics , Aortic Diseases/metabolism , Diet, High-Fat , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Brachiocephalic Trunk/pathology , Brachiocephalic Trunk/metabolism , Brachiocephalic Trunk/drug effects
7.
Thromb Res ; 238: 185-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729030

ABSTRACT

BACKGROUND: Plaque erosion, a type of coronary atherothrombosis, involves superficial injury to smooth muscle cell (SMC)-rich plaques. Elevated levels of coagulation factor VIII (FVIII) correlate with an increased ischemic heart disease risk. FVIII may contribute to thrombus formation on eroded plaques. AIMS: We aimed to elucidate the role of elevated FVIII in arterial thrombus formation within SMC-rich neointima in rabbits. METHODS AND RESULTS: We assessed the effect of recombinant human FVIII (rFVIII) on blood coagulation in vitro and platelet aggregation ex vivo. An SMC-rich neointima was induced through balloon injury to the unilateral femoral artery. Three weeks after the first balloon injury, superficial erosive injury and thrombus formation were initiated with a second balloon injury of the bilateral femoral arteries 45 min after the administration of rFVIII (100 IU/kg) or saline. The thrombus area and contents were histologically measured 15 min after the second balloon injury. rFVIII administration reduced the activated partial thromboplastin time and augmented botrocetin-induced, but not collagen- or adenosine 5'-diphosphate-induced, platelet aggregation. While rFVIII did not influence platelet-thrombus formation in normal intima, it increased thrombus formation on SMC-rich neointima post-superficial erosive injury. Enhanced immunopositivity for glycoprotein IIb/IIIa and fibrin was observed in rFVIII-administered SMC-rich neointima. Neutrophil count in the arterial thrombus on the SMC-rich neointima correlated positively with thrombus size in the control group, unlike the rFVIII group. CONCLUSIONS: Increased FVIII contributes to thrombus propagation within erosive SMC-rich neointima, highlighting FVIII's potential role in plaque erosion-related atherothrombosis.


Subject(s)
Factor VIII , Myocytes, Smooth Muscle , Neointima , Thrombosis , Rabbits , Animals , Neointima/pathology , Neointima/blood , Thrombosis/blood , Thrombosis/pathology , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Tunica Intima/pathology , Tunica Intima/drug effects , Humans , Platelet Aggregation/drug effects , Femoral Artery/pathology , Femoral Artery/injuries
8.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767703

ABSTRACT

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Subject(s)
Exosomes , Integrin beta1 , MicroRNAs , Telocytes , rac1 GTP-Binding Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Exosomes/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Mice , Telocytes/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Hypoxia/metabolism , Hypoxia/genetics , Hypoxia/complications , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Vascular Remodeling/genetics , Neuropeptides
9.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608823

ABSTRACT

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Subject(s)
Ferroptosis , Iron , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice , Iron/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Male , Cell Survival/drug effects , Histones/metabolism , Histones/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Mice, Inbred C57BL , Cyclohexylamines
10.
Biomed Pharmacother ; 174: 116505, 2024 May.
Article in English | MEDLINE | ID: mdl-38574614

ABSTRACT

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Subject(s)
Canagliflozin , Cell Proliferation , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Canagliflozin/pharmacology , Cell Proliferation/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Remodeling/drug effects
11.
J Stroke Cerebrovasc Dis ; 33(6): 107717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608825

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is characterized by an abundance of moyamoya vessels; however, the precise mechanism driving the spontaneous angiogenesis of these compensatory vessels remains unclear. Previous research has established a link between the stromal cell-derived factor-1 (SDF-1)/ CXC receptor 4 (CXCR4) axis and angiogenesis under hypoxic conditions. Nevertheless, the alterations in this axis within the cerebrospinal fluid, arachnoid membranes and vascular tissue of MMD patients have not been fully investigated. METHODS: Our study enrolled 66 adult MMD patients and 61 patients with atherosclerotic vascular disease (ACVD). We investigated the SDF-1 concentration in cerebrospinal fluid (CSF) and CXCR4 expression level on the arachnoid membranes and vascular tissue. We utilized enzyme-linked immunosorbent assay and immunohistochemistr. Additionally, we cultured and stimulated human brain microvascular endothelial cells (HBMECs) and smooth muscle cells (SMCs) under oxygen and glucose deprivation (OGD) conditions followed by reoxygenation, to examine any changes in the SDF-1/CXCR4 axis. RESULTS: The results demonstrated an elevation in the level of SDF-1 in CSF among MMD patients compared to those with ACVD. Moreover, the expression of CXCR4 in arachnoid membranes and vascular tissue showed a similar trend. Furthermore, the content of CXCR4 in HBMECs and SMCs increased with the duration of ischemia and hypoxia. However, it was observed that the expression of CXCR4 decreased at OGD/R 24h compared to OGD 24h. The temporal pattern of SDF-1 expression in HBMECs and SMCs mirrored that of CXCR4 expression. CONCLUSION: These findings indicate a critical role for the SDF-1/CXCR4 axis in the angiogenesis of moyamoya disease.


Subject(s)
Chemokine CXCL12 , Moyamoya Disease , Receptors, CXCR4 , Humans , Moyamoya Disease/metabolism , Moyamoya Disease/physiopathology , Moyamoya Disease/cerebrospinal fluid , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Chemokine CXCL12/cerebrospinal fluid , Male , Female , Adult , Middle Aged , Cells, Cultured , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Cell Hypoxia , Aged , Up-Regulation , Young Adult , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology
12.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648484

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Subject(s)
Atherosclerosis , Endothelial Cells , Lamin Type A , Muscle, Smooth, Vascular , Progeria , Animals , Mice , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Progeria/metabolism , Progeria/genetics , Progeria/pathology , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
13.
Front Endocrinol (Lausanne) ; 15: 1369369, 2024.
Article in English | MEDLINE | ID: mdl-38660518

ABSTRACT

Aims: To determine the roles of matrix metallopeptidase-9 (MMP9) on human coronary artery smooth muscle cells (HCASMCs) in vitro, early beginning of atherosclerosis in vivo in diabetic mice, and drug naïve patients with diabetes. Methods: Active human MMP9 (act-hMMP9) was added to HCASMCs and the expressions of MCP-1, ICAM-1, and VCAM-1 were measured. Act-hMMP9 (n=16) or placebo (n=15) was administered to diabetic KK.Cg-Ay/J (KK) mice. Carotid artery inflammation and atherosclerosis measurements were made at 2 and 10 weeks after treatment. An observational study of newly diagnosed drug naïve patients with type 2 diabetes mellitus (T2DM n=234) and healthy matched controls (n=41) was performed and patients had ultrasound of carotid arteries and some had coronary computed tomography angiogram for the assessment of atherosclerosis. Serum MMP9 was measured and its correlation with carotid artery or coronary artery plaques was determined. Results: In vitro, act-hMMP9 increased gene and protein expressions of MCP-1, ICAM-1, VCAM-1, and enhanced macrophage adhesion. Exogenous act-hMMP9 increased inflammation and initiated atherosclerosis in KK mice at 2 and 10 weeks: increased vessel wall thickness, lipid accumulation, and Galectin-3+ macrophage infiltration into the carotid arteries. In newly diagnosed T2DM patients, serum MMP9 correlated with carotid artery plaque size with a possible threshold cutoff point. In addition, serum MMP9 correlated with number of mixed plaques and grade of lumen stenosis in coronary arteries of patients with drug naïve T2DM. Conclusion: MMP9 may contribute to the initiation of atherosclerosis and may be a potential biomarker for the early identification of atherosclerosis in patients with diabetes. Clinical trial registration: https://clinicaltrials.gov, identifier NCT04424706.


Subject(s)
Atherosclerosis , Biomarkers , Diabetes Mellitus, Type 2 , Matrix Metalloproteinase 9 , Plaque, Atherosclerotic , Humans , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Animals , Biomarkers/metabolism , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/diagnostic imaging , Male , Female , Middle Aged , Atherosclerosis/metabolism , Atherosclerosis/pathology , Aged , Early Diagnosis , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Diabetes Mellitus, Experimental , Coronary Artery Disease/diagnosis , Coronary Artery Disease/metabolism , Coronary Vessels/pathology , Coronary Vessels/metabolism
14.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38639096

ABSTRACT

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Subject(s)
Atherosclerosis , Gene Regulatory Networks , Single-Cell Analysis , Humans , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Plaque, Atherosclerotic , Disease Progression , Female , Macrophages/metabolism , Macrophages/pathology , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
15.
Circ Res ; 134(11): 1427-1447, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38629274

ABSTRACT

BACKGROUND: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under ß-glycerophosphate treatment. We integrated Cleavage Under Targets and Tagmentation analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1 attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.


Subject(s)
Histones , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular , Nuclear Receptor Subfamily 4, Group A, Member 3 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathology , Mice , Humans , Histones/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Nuclear Receptor Subfamily 4, Group A, Member 3/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 3/genetics , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , DNA-Binding Proteins , Nerve Tissue Proteins , Receptors, Steroid , Receptors, Thyroid Hormone
16.
Int J Biol Macromol ; 268(Pt 2): 131868, 2024 May.
Article in English | MEDLINE | ID: mdl-38677690

ABSTRACT

Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Fibrillin-1/metabolism , Fibrillin-1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Signal Transduction , Disease Models, Animal , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mice, Knockout
17.
Circ Res ; 134(11): 1495-1511, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38686580

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive. METHODS: Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adeno-associated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS: In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor ß) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS: Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.


Subject(s)
Activating Transcription Factor 3 , Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Animals , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/chemically induced , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice , Male , Mice, Inbred C57BL , Apoptosis , Cells, Cultured , Angiotensin II , Cell Proliferation , Aorta, Abdominal/pathology , Aorta, Abdominal/metabolism , Disease Models, Animal
18.
Clin Exp Pharmacol Physiol ; 51(6): e13867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684457

ABSTRACT

Cardiovascular diseases, particularly those involving arterial stenosis and smooth muscle cell proliferation, pose significant health risks. This study aimed to investigate the therapeutic potential of curcumol in inhibiting platelet-derived growth factor-BB (PDGF-BB)-induced human aortic smooth muscle cell (HASMC) proliferation, migration and autophagy. Using cell viability assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and Western Blot analyses, we observed that curcumol effectively attenuated PDGF-BB-induced HASMC proliferation and migration in a concentration-dependent manner. Furthermore, curcumol mitigated PDGF-BB-induced autophagy, as evidenced by the downregulation of LC3-II/LC3-I ratio and upregulation of P62. In vivo experiments using an arteriosclerosis obliterans model demonstrated that curcumol treatment significantly ameliorated arterial morphology and reduced stenosis. Additionally, curcumol inhibited the activity of the KLF5/COX2 axis, a key pathway in vascular diseases. These findings suggest that curcumol has the potential to serve as a multi-target therapeutic agent for vascular diseases.


Subject(s)
Arteriosclerosis , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Sesquiterpenes , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Humans , Rats , Arteriosclerosis/drug therapy , Arteriosclerosis/pathology , Arteriosclerosis/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Male , Cell Movement/drug effects , Lower Extremity/blood supply , Autophagy/drug effects , Rats, Sprague-Dawley , Becaplermin/pharmacology
19.
J Cell Physiol ; 239(5): e31251, 2024 May.
Article in English | MEDLINE | ID: mdl-38634445

ABSTRACT

Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.


Subject(s)
Cell Dedifferentiation , Cell Proliferation , Muscle Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Promoter Regions, Genetic , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Signal Transduction , Phenotype , Carotid Artery Injuries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Neointima/metabolism , Neointima/pathology , Neointima/genetics , Cells, Cultured , Repressor Proteins/genetics , Repressor Proteins/metabolism
20.
JCI Insight ; 9(9)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592807

ABSTRACT

BACKGROUNDDisease of the aorta varies from atherosclerosis to aneurysms, with complications including rupture, dissection, and poorly characterized limited tears. We studied limited tears without any mural hematoma, termed intimomedial tears, to gain insight into aortic vulnerability to excessive wall stresses. Our premise is that minimal injuries in aortas with sufficient medial resilience to prevent tear progression correspond to initial mechanisms leading to complete structural failure in aortas with significantly compromised medial resilience.METHODSIntimomedial tears were macroscopically identified in 9 of 108 ascending aortas after surgery and analyzed by histology and immunofluorescence confocal microscopy.RESULTSNonhemorrhagic, nonatheromatous tears correlated with advanced aneurysmal disease and most lacked distinctive symptoms or radiological signs. Tears traversed the intima and part of the subjacent media, while the resultant defects were partially or completely filled with neointima characterized by differentiated smooth muscle cells, scattered leukocytes, dense fibrosis, and absent elastic laminae despite tropoelastin synthesis. Healed lesions contained organized fibrin at tear edges without evidence of plasma and erythrocyte extravasation or lipid accumulation.CONCLUSIONThese findings suggest a multiphasic model of aortic wall failure in which primary lesions of intimomedial tears either heal if the media is sufficiently resilient or progress as dissection or rupture by medial delamination and tear completion, respectively. Moreover, mural incorporation of thrombus and cellular responses to injury, two historically important concepts in atheroma pathogenesis, contribute to vessel wall repair with adequate conduit function, but even together are not sufficient to induce atherosclerosis.FUNDINGNIH (R01-HL146723, R01-HL168473) and Yale Department of Surgery.


Subject(s)
Aorta , Atherosclerosis , Fibrosis , Myocytes, Smooth Muscle , Humans , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Atherosclerosis/pathology , Female , Aorta/pathology , Aged , Middle Aged , Neointima/pathology , Tunica Intima/pathology , Tunica Media/pathology , Tunica Media/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...