ABSTRACT
BACKGROUND: The prevalence of obesity has increased at alarming rates, particularly because of the increased consumption of high-fat diets (HFDs). The influence of HFDs on intrinsic innervation and the intestinal wall has not been fully characterized. The aim of this study was to investigate the morpho-quantitative aspects of myenteric neurons and the wall of the small intestine in mice fed a HFD. METHODS: Swiss mice were fed a HFD (59% kcal from fat) or standard chow (9% Kcal from fat) for 8 weeks. Segments of the duodenum, jejunum, and ileum were subjected to histological processing for morpho-quantitative examination of the intestinal wall and mucosal cells, and immunohistochemistry was performed to evaluate myenteric neurons. The data for each segment were compared between the groups using an unpaired Student's t-test or an equivalent nonparametric test. RESULTS: The HFD increased body weight and visceral fat and decreased the length of the small intestine and the circumference of the ileum. In the duodenum, the HFD increased the density of the nitrergic subpopulation and decreased the area of nitrergic neurons and vasoactive intestinal peptide (VIP) varicosities. In the jejunum, the density of the nitrergic subpopulation was increased and the neuronal areas of the general population, nitrergic subpopulation and (VIP) varicosities were reduced. In the ileum, the density of the general population and nitrergic subpopulation were increased and the neuronal areas of the general population, nitrergic subpopulation and (VIP) varicosities were reduced. The morphometric parameters of the villi, crypts, muscular layer and total wall generally increased in the duodenum and jejunum and decreased in the ileum. In the duodenum and jejunum, the HFD promoted a decreased in the proportion of intraepithelial lymphocytes. In the ileum, the proportion of intraepithelial lymphocytes and goblet cells reduced, and the enteroendocrine cells increased. CONCLUSIONS: The high-fat diet induces changes in the myenteric innervation of the small intestine, intestinal wall and mucosal cells responsible for the secretion of hormones and maintenance of the protective intestinal barrier. The morpho-quantitative data provide a basis for further studies to clarify the influence of HFD in the motility, digestive and absorptive capacity, and intestinal barrier.
Subject(s)
Diet, High-Fat/adverse effects , Intestinal Mucosa/pathology , Intestine, Small/innervation , Intestine, Small/pathology , Neurons/chemistry , Neurons/pathology , Animals , Cell Proliferation , Duodenum/innervation , Duodenum/pathology , Duodenum/physiopathology , Enteroendocrine Cells , Goblet Cells , Ileum/innervation , Ileum/pathology , Ileum/physiopathology , Intestinal Mucosa/physiopathology , Intestine, Small/physiopathology , Jejunum/innervation , Jejunum/pathology , Jejunum/physiopathology , Lymphocyte Count , Male , Mice , Myenteric Plexus/pathology , Myosin Type V/analysis , Nitrergic Neurons/pathology , Obesity/etiology , Obesity/pathology , Vasoactive Intestinal Peptide/analysisABSTRACT
During the ageing process the enteric nervous system undergoes morphofunctional changes, such as enteric neurodegeneration. Neuronal death can be attributed to increase radicals free, and ascorbic acid (AA), known antioxidant, could minimize damage cause by oxidative stress. The objective of this study is to analyse the behaviour of morphoquantative myenteric neurons in the duodenum of adult Wistar rats with aged 90 (C90), 345 (E345) and 428 (E428) days, as well as animals of the same age who received ascorbic acid supplementation for 120 days (EA345 and EA428). Whole-mount preparations of muscle layer from the duodenum of the animals were immunostained by the method myosin V. 80 microscopic fields were quantified (14.8 mm2/animal) and measured 100 neuronal cell bodies per animal. During the aging process, there was a reduction in neuronal density in all animals groups, indicating that the effects of age were not attenuated with AA supplementation. The increase in the neuronal area of the cell bodies in 428-day-old animals proved the influence of age on this parameter. There was no observed a neuroprotective effect of AA (1 mL/g body weight) on the neuronal population myenteric myosin V immunoreactive.
Subject(s)
Aging , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Duodenum/innervation , Myenteric Plexus/drug effects , Neurons/drug effects , Animals , Dietary Supplements , Duodenum/drug effects , Immunohistochemistry , Male , Myosin Type V/analysis , Rats , Rats, WistarABSTRACT
CONTEXT: Diabetes mellitus is a disease characterized by hyperglycemia that, when allowed to progress long-term untreated, develops vascular and neurological complications, which are responsible for the development of alterations in the enteric nervous system in diabetic patients. In the gastrointestinal tract, diabetes mellitus promotes motor and sensory changes, and in the reflex function of this system, causing gastroparesis, diarrhea, constipation, megacolon, slow gastrointestinal transit, gastric stasis and dilation with decreased or increased peristaltic contractions. Several studies have shown that oxidative stress is the main responsible for the vascular and neurological complications affecting the enteric nervous system of diabetics. OBJECTIVE: The effects of 0.1% and 2% vitamin E on myosin-V- and nNOS-immunoreactive neurons in the jejunum of diabetic rats were investigated. METHODS: Thirty rats were divided into the groups: normoglycemic, normoglycemic treated with 0.1% vitamin E, normoglycemic treated with 2% vitamin E, diabetic, diabetic treated with 0.1% vitamin E, and diabetic treated with 2% vitamin E. The neuronal density and areas of neuron cell bodies were determined. RESULTS: Diabetes (diabetic group) significantly reduced the number of myosin-V-immunoreactive neurons compared with the normoglycemic group. The diabetic treated with 0.1% vitamin E and diabetic treated with 2% vitamin E groups did not exhibit a greater density than the D group (P>0.05). Nitrergic density did not change with diabetes (P>0.05). The areas of myosin-V- and nNOS-immunoreactive neurons significantly increased in the normoglycemic treated with 2% vitamin E and diabetic groups compared with the normoglycemic group. CONCLUSION: Supplementation with 2% vitamin E had a neurotrophic effect only in the area of myosin-V-immunoreactive neurons compared with the diabetic group.
CONTEXTO: O diabetes mellitus (DM) é uma doença caracterizada pela hiperglicemia que a longo prazo, quando não tratada, desenvolve complicações vasculares e neurológicas, responsáveis pelo desenvolvimento das alterações no sistema nervoso entérico de pacientes diabéticos. Em nível gastrointestinal o DM provoca modificações motoras, sensoriais e na função reflexa desse sistema, podendo ocasionar gastroparesia, diarreia, constipação, megacólon, lentidão do trânsito gastrointestinal, estase e dilatação gástrica com diminuição ou aumento de contrações peristálticas. Diversos estudos têm evidenciado que o estresse oxidativo é o principal responsável pelas complicações vasculares e neurológicas que atingem o sistema nervoso entérico de diabéticos. OBJETIVO: O efeito da vitamina E 0,1% e 2 sobre a miosina-V e nNOS imunorreativas em neurônios do jejuno de ratos diabéticos foram investigados. MÉTODOS: Trinta ratos foram divididos em grupos: normoglicêmicos (NU), normoglicêmicos tratados com vitamina E 0,1% (NE1), normoglicêmicos tratados com vitamina E 2% (NE2), diabético (UD), diabéticos tratados com vitamina E 0,1% (DE1), e diabéticos tratados com vitamina E 2% (DE2). A densidade neuronal e áreas de corpos celulares de neurônios foram determinadas. RESULTADOS: Diabetes (UD grupo) reduziu significativamente o número de neurônios miosina-V imunorreativos quando comparado com o grupo UN. Os grupos DE1 e DE2 não exibem uma maior densidade do que o grupo D (P>0,05). Densidade nitrérgicos não se alterou com diabetes (P>0,05). As áreas dos neurônios miosina-V e nNOS imunorreativos aumentaram significativamente nos grupos NE2 e UD comparados com o grupo UN. CONCLUSÃO: A suplementação com vitamina E 2% teve um efeito neurotrófico apenas na área da miosina-V imunorreativos neurônios em comparação com o grupo UD.
Subject(s)
Animals , Male , Rats , Diabetes Mellitus, Experimental/metabolism , Jejunum/innervation , Myenteric Plexus/chemistry , Myosin Type V/analysis , Nitric Oxide Synthase Type I/analysis , Vitamin E/administration & dosage , Vitamins/administration & dosage , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Immunohistochemistry , Jejunum/chemistry , Myosin Type V/drug effects , Neurons/chemistry , Neurons/drug effects , Nitric Oxide Synthase Type I/drug effects , Rats, Wistar , StreptozocinABSTRACT
CONTEXT: Diabetes mellitus is a disease characterized by hyperglycemia that, when allowed to progress long-term untreated, develops vascular and neurological complications, which are responsible for the development of alterations in the enteric nervous system in diabetic patients. In the gastrointestinal tract, diabetes mellitus promotes motor and sensory changes, and in the reflex function of this system, causing gastroparesis, diarrhea, constipation, megacolon, slow gastrointestinal transit, gastric stasis and dilation with decreased or increased peristaltic contractions. Several studies have shown that oxidative stress is the main responsible for the vascular and neurological complications affecting the enteric nervous system of diabetics. OBJECTIVE: The effects of 0.1% and 2% vitamin E on myosin-V- and nNOS-immunoreactive neurons in the jejunum of diabetic rats were investigated. METHODS: Thirty rats were divided into the groups: normoglycemic, normoglycemic treated with 0.1% vitamin E, normoglycemic treated with 2% vitamin E, diabetic, diabetic treated with 0.1% vitamin E, and diabetic treated with 2% vitamin E. The neuronal density and areas of neuron cell bodies were determined. RESULTS: Diabetes (diabetic group) significantly reduced the number of myosin-V-immunoreactive neurons compared with the normoglycemic group. The diabetic treated with 0.1% vitamin E and diabetic treated with 2% vitamin E groups did not exhibit a greater density than the D group (P>0.05). Nitrergic density did not change with diabetes (P>0.05). The areas of myosin-V- and nNOS-immunoreactive neurons significantly increased in the normoglycemic treated with 2% vitamin E and diabetic groups compared with the normoglycemic group. CONCLUSION: Supplementation with 2% vitamin E had a neurotrophic effect only in the area of myosin-V-immunoreactive neurons compared with the diabetic group.
Subject(s)
Diabetes Mellitus, Experimental/metabolism , Jejunum/innervation , Myenteric Plexus/chemistry , Myosin Type V/analysis , Nitric Oxide Synthase Type I/analysis , Vitamin E/administration & dosage , Vitamins/administration & dosage , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Immunohistochemistry , Jejunum/chemistry , Male , Myosin Type V/drug effects , Neurons/chemistry , Neurons/drug effects , Nitric Oxide Synthase Type I/drug effects , Rats , Rats, Wistar , StreptozocinABSTRACT
CONTEXT: The inflammatory response itself and the consequent oxidative stress are able to promote neurodegeneration. So, it is possible that enteric nervous system is affected by inflammatory diseases threatening quality of life of patients. However, gastrointestinal symptoms of arthritis are usually attributed to anti-inflammatory drugs rather than neural damage. OBJECTIVE: To confirm if the general population of myenteric neurons from the ileum and jejunum of rats is affected by arthritis. METHODS: Twenty Holtzmann rats, 58-day-old male, were used and divided in four groups: control group (C30), arthritic group (Art30), older control group (C60) and older arthritic group (Art60). At 58 days old, the animals in groups Art30 and Art60 received an injection of the complete Freund's adjuvant in order to induce arthritis. The whole-mount preparations of ileum and jejunum were processed for myosin-V immunohistochemistry. Quantitative and morphometric analyses were performed. RESULTS: Groups Art30 and Art60 presented, respectively, a reduction of 2% and 6% in intestinal area when compared to their control groups. No significant differences were observed in general neuronal density among the four groups (P>0.05). Group C60 presented a reduction of 14.4% and 10.9% in mean neuronal cell body area when compared to group C30 (P<0.05), for the ileum and jejunum, respectively. The other groups had a similar mean neuronal cell body area (P>0.05). CONCLUSION: Arthritis does not promote quantitative or morphological damages in general myenteric population. However, studies in progress have revealed some significant alterations in myenteric neurons subpopulations (nitrergic and VIP-ergic neurons).
Subject(s)
Arthritis/pathology , Ileum/innervation , Jejunum/innervation , Myenteric Plexus/pathology , Myosin Type V/analysis , Neurons/chemistry , Animals , Biomarkers/analysis , Ileum/pathology , Immunohistochemistry , Jejunum/pathology , Male , Neurons/pathology , Rats , Rats, Sprague-DawleyABSTRACT
CONTEXT: The inflammatory response itself and the consequent oxidative stress are able to promote neurodegeneration. So, it is possible that enteric nervous system is affected by inflammatory diseases threatening quality of life of patients. However, gastrointestinal symptoms of arthritis are usually attributed to anti-inflammatory drugs rather than neural damage. OBJECTIVE: To confirm if the general population of myenteric neurons from the ileum and jejunum of rats is affected by arthritis. METHODS: Twenty Holtzmann rats, 58-day-old male, were used and divided in four groups: control group (C30), arthritic group (Art30), older control group (C60) and older arthritic group (Art60). At 58 days old, the animals in groups Art30 and Art60 received an injection of the complete Freund's adjuvant in order to induce arthritis. The whole-mount preparations of ileum and jejunum were processed for myosin-V immunohistochemistry. Quantitative and morphometric analyses were performed. RESULTS: Groups Art30 and Art60 presented, respectively, a reduction of 2 percent and 6 percent in intestinal area when compared to their control groups. No significant differences were observed in general neuronal density among the four groups (P>0.05). Group C60 presented a reduction of 14.4 percent and 10.9 percent in mean neuronal cell body area when compared to group C30 (P<0.05), for the ileum and jejunum, respectively. The other groups had a similar mean neuronal cell body area (P>0.05). CONCLUSION: Arthritis does not promote quantitative or morphological damages in general myenteric population. However, studies in progress have revealed some significant alterations in myenteric neurons subpopulations (nitrergic and VIP-ergic neurons).
CONTEXTO: A resposta inflamatória e o estresse oxidativo acentuados em decorrência da artrite reumatóide são capazes de promover neurodegeneração. Nessas condições, é possível que o sistema nervoso entérico seja afetado, diminuindo a qualidade de vida dos pacientes. No entanto, os sintomas da artrite no trato gastrointestinal são geralmente associados ao uso de medicamentos anti-inflamatórios do que a um possível dano neural. OBJETIVO: Verificar se a população geral de neurônios mioentéricos do íleo e do jejuno de ratos artríticos é afetada pela artrite. MÉTODOS: Foram utilizados 20 ratos Holtzmann, inicialmente com 58 dias de idade, divididos em 4 grupos: controle com 88 dias (C30); artrítico com 88 dias (Art30); controle com 118 dias (C60) e artrítico com 118 dias (Art60). Os animais dos grupos Art30 e Art60 receberam aos 58 dias de idade o adjuvante completo de Freund para indução da artrite. Os preparados totais de íleo e jejuno foram submetidos a imunoistoquímica para a proteína miosina-V. Realizou-se análises quantitativas e morfométricas dos neurônios. RESULTADOS: Os animais Art30 e Art60 apresentaram, respectivamente, redução de 2 por cento e 6 por cento na área intestinal em relação aos seus controles. Não foram observadas diferenças na densidade neuronal geral entre os quatro grupos (P>0,05). O grupo C60 apresentou redução de 14,4 por cento e 10,9 por cento na área média do corpo celular neuronal em relação ao grupo C30 (P<0,05). Os demais grupos apresentaram área média de corpo celular semelhante (P>0,05). CONCLUSÃO: A artrite não provocou alterações quantitativas ou morfológicas na população mioentérica geral, entretanto, estudos em andamento revelam alterações significativas em subpopulações de neurônios mioentéricos (nitrérgicos e VIP-érgicos).
Subject(s)
Animals , Male , Rats , Arthritis/pathology , Ileum/innervation , Jejunum/innervation , Myenteric Plexus/pathology , Myosin Type V/analysis , Neurons/chemistry , Biomarkers/analysis , Immunohistochemistry , Ileum/pathology , Jejunum/pathology , Neurons/pathology , Rats, Sprague-DawleyABSTRACT
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 ºC, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Subject(s)
Antigens/analysis , Bees/immunology , Immunohistochemistry/methods , Myosin Type V/analysis , Optic Lobe, Nonmammalian/chemistry , Animals , Antigens/immunology , Heating , Microwaves , Paraffin Embedding , Staining and LabelingABSTRACT
Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the developing rat hippocampus. Coronal sections of the embryonic and postnatal rat hippocampus were probed with an affinity-purified, polyclonal anti-myosin Va antibody. Myosin Va was localized in the cytoplasm of granule cells in the dentate gyrus and of pyramidal cells in Ammon's horn formation. Myosin Va expression changed during development, being higher in differentiating rather than already differentiated granule and pyramidal cells. Some of these cells presented a typical migratory profile, while others resembled neurons that were in the process of differentiation. Myosin Va was also transiently expressed in fibers present in the fimbria. Myosin Va was not detected in germinative matrices of the hippocampus proper or of the dentate gyrus. In conclusion, myosin Va expression in both granule and pyramidal cells showed both position and time dependency during hippocampal development, indicating that this motor protein is under developmental regulation.
Subject(s)
Animals , Female , Rats , Hippocampus/embryology , Hippocampus/metabolism , Myosin Type V/analysis , Dentate Gyrus/embryology , Dentate Gyrus/metabolism , Immunohistochemistry , Myosin Type V/metabolism , Pyramidal Cells/embryology , Pyramidal Cells/metabolism , Rats, WistarABSTRACT
Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the developing rat hippocampus. Coronal sections of the embryonic and postnatal rat hippocampus were probed with an affinity-purified, polyclonal anti-myosin Va antibody. Myosin Va was localized in the cytoplasm of granule cells in the dentate gyrus and of pyramidal cells in Ammon's horn formation. Myosin Va expression changed during development, being higher in differentiating rather than already differentiated granule and pyramidal cells. Some of these cells presented a typical migratory profile, while others resembled neurons that were in the process of differentiation. Myosin Va was also transiently expressed in fibers present in the fimbria. Myosin Va was not detected in germinative matrices of the hippocampus proper or of the dentate gyrus. In conclusion, myosin Va expression in both granule and pyramidal cells showed both position and time dependency during hippocampal development, indicating that this motor protein is under developmental regulation.
Subject(s)
Hippocampus/embryology , Hippocampus/metabolism , Myosin Type V/analysis , Animals , Dentate Gyrus/embryology , Dentate Gyrus/metabolism , Female , Immunohistochemistry , Myosin Type V/metabolism , Pyramidal Cells/embryology , Pyramidal Cells/metabolism , Rats , Rats, WistarABSTRACT
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 ºC, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Subject(s)
Animals , Antigens/analysis , Bees/immunology , Immunohistochemistry/methods , Myosin Type V/analysis , Optic Lobe, Nonmammalian/chemistry , Antigens/immunology , Heating , Microwaves , Paraffin Embedding , Staining and LabelingABSTRACT
Alterations in the gastrointestinal neuromuscular function related to age have been demonstrated in human and animal models. This study analyzes the effects of the aging process on the area of the neuronal cell bodies of the myenteric plexus in the antimesenteric and intermediate regions of the ileal circumference of Wistar, 12 month-old in comparison 3 month-old animals. The ileum was removed and whole-mount preparations immunostained by the antibody anti-myosin-V were processed. The morphometric analyses were performed using a computerized image analysis system, with a subsequent distribution of neurons by size in intervals of 100 micro2. The cellular body morphometry revealed a significant increase in the size of the myosin-V- immunoreactive myenteric neurons from 12 month-old animals when compared with 3 month-old animals. However, significant differences between the regions were not observed; these observations were not age-dependent. The implications of these results in relation to the increase of the body weight, size of the small intestine, general organization of the myenteric plexus, staining method of neurons and the possible factors involved in the regulation and/or control of the volume of neronal cells due to aging, are discussed.
Subject(s)
Aging , Ileum/innervation , Myenteric Plexus/cytology , Myosin Type V/analysis , Neurons/cytology , Animals , Immunohistochemistry , Male , Myosin Type V/immunology , Neurons/chemistry , Rats , Rats, WistarABSTRACT
Alterations in the gastrointestinal neuromuscular function related to age have been demonstrated in human and animal models. This study analyzes the effects of the aging process on the area of the neuronal cell bodies of the myenteric plexus in the antimesenteric and intermediate regions of the ileal circumference of Wistar, 12 month-old in comparison 3 month-old animals. The ileum was removed and whole-mount preparations immunostained by the antibody anti-myosin-V were processed. The morphometric analyses were performed using a computerized image analysis system, with a subsequent distribution of neurons by size in intervals of 100 micro2. The cellular body morphometry revealed a significant increase in the size of the myosin-V- immunoreactive myenteric neurons from 12 month-old animals when compared with 3 month ¹old animals. However, significant differences between the regions were not observed; these observations were not age-dependent. The implications of these results in relation to the increase of the body weight, size of the small intestine, general organization of the myenteric plexus, staining method of neurons and the possible factors involved in the regulation and/or control of the volume of neronal cells due to aging, are discussed.(AU)
Subject(s)
Animals , Male , Rats , Ileum/innervation , Myenteric Plexus/cytology , Myosin Type V/analysis , Myosin Type V/immunology , Neurons/chemistry , Neurons/cytology , Aging , Rats, Wistar , ImmunohistochemistryABSTRACT
Alterations in the gastrointestinal neuromuscular function related to age have been demonstrated in human and animal models. This study analyzes the effects of the aging process on the area of the neuronal cell bodies of the myenteric plexus in the antimesenteric and intermediate regions of the ileal circumference of Wistar, 12 month-old in comparison 3 month-old animals. The ileum was removed and whole-mount preparations immunostained by the antibody anti-myosin-V were processed. The morphometric analyses were performed using a computerized image analysis system, with a subsequent distribution of neurons by size in intervals of 100 micro2. The cellular body morphometry revealed a significant increase in the size of the myosin-V- immunoreactive myenteric neurons from 12 month-old animals when compared with 3 month old animals. However, significant differences between the regions were not observed; these observations were not age-dependent. The implications of these results in relation to the increase of the body weight, size of the small intestine, general organization of the myenteric plexus, staining method of neurons and the possible factors involved in the regulation and/or control of the volume of neronal cells due to aging, are discussed.
Subject(s)
Animals , Male , Rats , Aging , Ileum/innervation , Myosin Type V/analysis , Myosin Type V/immunology , Neurons/cytology , Neurons/chemistry , Myenteric Plexus/cytology , Immunohistochemistry , Rats, WistarABSTRACT
We investigated the effect of the ascorbic acid on the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-stained and myosin-V myenteric neurons in the ileum of chronically diabetic rats. The study was performed 4 months after inducing experimental diabetes with streptozotocin. Diabetic rats showed increased (p<0.05) glycaemia and glycated haemoglobin. Three groups were compared, i.e., nondiabetic rats, diabetic rats and diabetic rats treated with ascorbic acid. Myosin-V immunohistochemistry and NADPH-d histochemistry were employed. We investigated the areas of 500 cell bodies of myosin-V neurons and of 500 NADPH-d-stained neurons from all groups. The quantitative analysis was performed by using an area of 8.96 mm(2) from each ileum. The two groups of diabetic rats and diabetic rats treated with ascorbic acid showed reduction in the number and an increased area of the myosin-V-immunostained myenteric neurons. In addition, we observed increased relative proportion of NADPH-d-stained neurons in diabetic rats and diabetic rats treated with ascorbic acid. However, the area of these neurons in the diabetic rats group was larger than those evidenced in the nondiabetic rats and diabetic rats treated with ascorbic acid.