Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768366

ABSTRACT

Mechanical properties of healthy and Dupuytren fibroblasts were investigated by atomic force microscopy (AFM). In addition to standard force curves, rheological properties were assessed using an oscillatory testing methodology, in which the frequency was swept from 1 Hz to 1 kHz, and data were analyzed using the structural damping model. Dupuytren fibroblasts showed larger apparent Young's modulus values than healthy ones, which is in agreement with previous results. Moreover, cell mechanics were compared before and after ML-7 treatment, which is a myosin light chain kinase inhibitor (MLCK) that reduces myosin activity and hence cell contraction. We employed two different concentrations of ML-7 inhibitor and could observe distinct cell reactions. At 1 µM, healthy and scar fibroblasts did not show measurable changes in stiffness, but Dupuytren fibroblasts displayed a softening and recovery after some time. When increasing ML-7 concentration (3 µM), the majority of cells reacted, Dupuytren fibroblasts were the most susceptible, not being able to recover from the drug and dying. These results suggested that ML-7 is a potent inhibitor for MLCK and that myosin II is essential for cytoskeleton stabilization and cell survival.


Subject(s)
Cytoskeleton , Dupuytren Contracture , Fibroblasts , Microscopy, Atomic Force , Muscle Contraction , Myosin Light Chains , Humans , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/physiology , Cytoskeleton/ultrastructure , Dupuytren Contracture/drug therapy , Dupuytren Contracture/metabolism , Dupuytren Contracture/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Mechanical Phenomena , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/pharmacology , Myosin-Light-Chain Kinase/therapeutic use , Muscle Contraction/drug effects , Muscle Contraction/physiology
2.
J Healthc Eng ; 2022: 8124343, 2022.
Article in English | MEDLINE | ID: mdl-35378949

ABSTRACT

Objective: The aim of this study was to evaluate whether myosin light chain kinase (MLCK) knockdown attenuated H9C2 cell hypoxia/reoxygenation (H/R) injury and downstream signaling pathway. Methods: The MLCK expression in H/R injury model H9C2 cell was determined by western blot and qRT-PCR. H/R cells were transfected with si-MLCK in the presence of P38 inhibitor (SB203580) or ERK inhibitor (U0126). Then, cell apoptosis was verified by flow cytometry. Apoptosis-related proteins were detected by western blot. The contents of reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), interleukin-6 (IL-6), interleukin (IL)-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were measured using flow cytometry and colorimetric assays, respectively. Results: MLCK expression was higher in H/R cells. Knockdown of MLCK diminished the amounts of ROS, LDH, IL-6, IL-1ß, and TNF-α and elevated the release of SOD in H/R model H9C2 cells. Additionally, H/R injury induced the cumulative expression and phosphorylation of ERK and the phosphorylation of P38, whereas MLCK siRNA-treated cells showed decreased ERK1/2 and P38 activation. Inversely, P38 inhibitor (SB203580) and ERK inhibitor (U0126) could reverse the cardioprotective effects induced by si-MLCK. Conclusion: MLCK knockdown attenuated H/R injury in H9C2 cells via regulating the ERK/P38 signaling pathway. MLCK/ERK/p38 axis may provide novel insight into therapeutic targets to restrain I/R injury caused by revascularization therapy after acute myocardial infarction.


Subject(s)
Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Hypoxia/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Kinase/therapeutic use , Phosphorylation
3.
Psychopharmacology (Berl) ; 236(5): 1583-1596, 2019 May.
Article in English | MEDLINE | ID: mdl-31147734

ABSTRACT

RATIONALE: Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES: The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS: Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS: ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS: Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.


Subject(s)
Azepines/pharmacology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Maternal Deprivation , Naphthalenes/pharmacology , Stress, Psychological/metabolism , Animals , Animals, Newborn , Azepines/therapeutic use , Corticosterone/metabolism , Dose-Response Relationship, Drug , Female , Gastrointestinal Microbiome/physiology , Male , Myosin-Light-Chain Kinase/pharmacology , Myosin-Light-Chain Kinase/therapeutic use , Naphthalenes/therapeutic use , Pregnancy , Rats , Rats, Wistar , Stress, Psychological/drug therapy , Stress, Psychological/psychology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...