Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(9): 098102, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463670

ABSTRACT

We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by nonequilibrium cluster formation is detected for a critical cell packing fraction around 17%. This transition is characterized by a scale-free power-law cluster-size distribution, with an exponent 0.88±0.07, and the appearance of giant number fluctuations. Our findings are in quantitative agreement with simulations of self-propelled rods. This suggests that the interplay of self-propulsion and the rod shape of bacteria is sufficient to induce collective motion.


Subject(s)
Myxococcus/cytology , Myxococcus/growth & development , Cluster Analysis , Colony Count, Microbial , Movement/physiology
2.
Annu Rev Genet ; 42: 109-30, 2008.
Article in English | MEDLINE | ID: mdl-18605899

ABSTRACT

Myxococcus xanthus creates complex and dynamic multicellular patterns as it swarms. The cells have two polar gliding engines: pulling type IV pili at their leading pole and pushing slime secretory nozzles at their lagging pole. Evidence is presented that slime secretion is vital for cell survival and that the peptidoglycan/cytoskeleton serves as a template to keep both engines oriented in the same direction. Swarming requires that each cell periodically reverse its gliding direction. For the leading pole to become the trailing pole, old engines are inactivated at both ends while new engines are being created at both ends. Reversal is initiated by a small G-protein reversal switch; a pulse of frzE approximately P from a reversal clock triggers MglA to bind GTP. Mgl.GTP then recognizes the engines that are currently in use and inactivates both of them. Meanwhile, new engines appear as instructed by the template, and the cell starts to glide in the opposite direction.


Subject(s)
Myxococcus/cytology , Myxococcus/physiology , Bacterial Adhesion , Bacterial Proteins/physiology , Cell Polarity , Fimbriae Proteins/physiology , Fimbriae, Bacterial/physiology , Models, Biological , Movement , Mutation , Myxococcus/genetics
3.
Anal Bioanal Chem ; 374(3): 421-6, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12373389

ABSTRACT

A novel cell lysis system was developed that is based on laser-induced disruption of bacterial and yeast cells. It will find application as a rapid, efficient and clean sample preparation step in bioanalytical detection systems. Using E. coli as our model analyte, we optimized cell lysis with respect to optimal laser wavelength, lowest energy input requirements, RNA release from the cells, and potential protein damage. The optimized system was finally applied to the lysis of four additional microorganisms. All experiments were carried out with about 2000 cells per sample or less. Initially, lysis was determined by the detection of cell survival after laser treatment using standard microbiological techniques, (i.e., cells were grown on nutrient agar plates). Then, actual release of mRNA from the cells was proven. Wavelengths investigated ranged from 500 nm to 1550 nm. An average power of 100 mW for the lasers was shown to be sufficient to obtain cell lysis at wavelengths above 1000 nm, with optimal wavelengths between 1250 nm and 1550 nm. Since water absorbs energy at those wavelengths, it is assumed that laser exposure results in an instantaneous increase of the cell temperature, which causes rupture of the cell membrane. Second, damage to protein solutions treated under optimized laser-lysis conditions was also studied. Using a pure solution of horseradish peroxidase as a model protein, no loss in enzyme activity was observed. Thus, it was concluded that damage to intracellular proteins is unlikely. Third, RNA release was tested using an E. coli specific RNA biosensor. Release of RNA was not detected from untreated cells, but laser-treated E. coli cells displayed significant RNA release due to laser-induced cell lysis. Finally, lysis of M. luteus, B. subtilis, B. cereus, and S. cerevisiae were investigated under optimized conditions. In all cases, laser-induced lysis of the cells was confirmed by determination of cell survival. Hence, laser-induced cell lysis is an efficient procedure that can be used for sample preparation, without damage to macromolecules, in bioanalytical detection systems for microorganisms. Miniaturized lasers and miniaturized cell-lysis chambers will create a simple, field-usable cell lysis system and allow the application of laser-induced cell lysis in micro Total Analysis Systems.


Subject(s)
Cytological Techniques/methods , Escherichia coli/cytology , Lasers , Bacillus cereus/cytology , Bacillus subtilis/cytology , Bacterial Proteins/physiology , Cell Membrane/physiology , Horseradish Peroxidase/analysis , Myxococcus/cytology , RNA, Bacterial/analysis , Saccharomyces cerevisiae/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...