Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Cells ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38607029

ABSTRACT

The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and pH by the drinks we imbibe (e.g., hypotonic: water, tea, and coffee; hypertonic: assorted fruit juices, and red wines). In the mouth, the broad-spectrum antiviral mediator MxA (a dynamin-family large GTPase) is constitutively expressed in healthy periodontal tissues and induced by Type III interferons (e.g., IFN-λ1/IL-29). Endogenously induced human MxA and exogenously expressed human GFP-MxA formed membraneless biomolecular condensates in the cytoplasm of oral carcinoma cells (OECM1 cell line). These condensates likely represent storage granules in equilibrium with antivirally active dispersed MxA. Remarkably, cytoplasmic MxA condensates were exquisitely sensitive sensors of hypotonicity-the condensates in oral epithelium disassembled within 1-2 min of exposure of cells to saliva-like one-third hypotonicity, and spontaneously reassembled in the next 4-7 min. Water, tea, and coffee enhanced this disassembly. Fluorescence changes in OECM1 cells preloaded with calcein-AM (a reporter of cytosolic "macromolecular crowding") confirmed that this process involved macromolecular uncrowding and subsequent recrowding secondary to changes in cell volume. However, hypertonicity had little effect on MxA condensates. The spontaneous reassembly of GFP-MxA condensates in oral epithelial cells, even under continuous saliva-like hypotonicity, was slowed by the protein-phosphatase-inhibitor cyclosporin A (CsA) and by the K-channel-blocker tetraethylammonium chloride (TEA); this is suggestive of the involvement of the volume-sensitive WNK kinase-protein phosphatase (PTP)-K-Cl cotransporter (KCC) pathway in the regulated volume decrease (RVD) during condensate reassembly in oral cells. The present study identifies a novel subcellular consequence of hypotonic stress in oral epithelial cells, in terms of the rapid and dynamic changes in the structure of one class of phase-separated biomolecular condensates in the cytoplasm-the antiviral MxA condensates. More generally, the data raise the possibility that hypotonicity-driven stresses likely affect other intracellular functions involving liquid-liquid phase separation (LLPS) in cells of the oral mucosa.


Subject(s)
Myxovirus Resistance Proteins , Saliva , Humans , Biomolecular Condensates , Coffee , Epithelial Cells , Saliva/metabolism , Tea , Water , Myxovirus Resistance Proteins/metabolism
2.
Virology ; 595: 110066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574415

ABSTRACT

Avian influenza virus (AIV) is a constant threat to animal health with recent global outbreaks resulting in the death of hundreds of millions of birds with spillover into mammals. Myxovirus-resistance (Mx) proteins are key mediators of the antiviral response that block virus replication. Mouse (Mu) Mx (Mx1) is a strong antiviral protein that interacts with the viral nucleoprotein to inhibit polymerase function. The ability of avian Mx1 to inhibit AIV is unclear. In these studies, Mu Mx1 was stably introduced into chicken DF1 cells to enhance the immune response against AIV. Following infection, titers of AIV were significantly decreased in cells expressing Mu Mx1. In addition, considerably less cytopathic effect (CPE) and matrix protein staining was observed in gene-edited cells expressing Mu Mx1, suggesting Mu Mx1 is broadly effective against multiple AIV subtypes. This work provides foundational studies for use of gene-editing to enhance innate disease resistance against AIV.


Subject(s)
Chickens , Immunity, Innate , Influenza in Birds , Myxovirus Resistance Proteins , Virus Replication , Animals , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Cell Line , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/genetics , Mice , Mutagenesis, Insertional , Influenza A virus/immunology , Influenza A virus/genetics
3.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512975

ABSTRACT

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Subject(s)
Capsid , Nuclear Pore Complex Proteins , Humans , Capsid/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Cyclophilin A/genetics , Cyclophilin A/metabolism , GTP Phosphohydrolases/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Antiviral Agents/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism
4.
Int J Biol Macromol ; 266(Pt 1): 131101, 2024 May.
Article in English | MEDLINE | ID: mdl-38547939

ABSTRACT

Accurate diagnosis is crucial for effective patient care and the containment of antimicrobial resistance outbreaks. The intricate challenge of distinguishing bacterial from viral infections, coupled with limited diagnostic tools and overlapping symptoms has driven the utilization of molecular imprinting techniques. This study focuses on developing cost-effective, chemically stable antibody analogs for the interferon-induced protein myxovirus resistance protein A (MxA). MxA is an intracellular, cytoplasmic GTPase having activity against a wide range of viruses and serves as a distinctive biomarker for viral infections. We utilized computational design to guide the polymer assembly, centering on epitope imprinting to target MxA-specific regions crucial for interaction. Molecular docking calculations, alongside a pioneering multi-monomer simultaneous docking (MMSD) protocol, efficiently elucidate cooperativity during pre-polymerization. Monomer binding affinity scores, such as for APTMS, exhibited notable increase, ranging from -3.11 to -13.03 kcal/mol across various MMSD combinations compared to a maximum of -2.78 kcal/mol in single monomer docking, highlighting the capacity of MMSD in elucidating crucial monomer-monomer interactions. This computational approach provides a theoretical alternative to labor-intensive experimental optimization, streamlining the development process for synthetic receptors. Simulations reveal unique interactions enhancing MIP-peptide complementarity, yielding optimized receptors selectively binding to MxA epitopes. The obtained MIPs demonstrated a maximum adsorption capacity of approximately 12 mg/g and captured 1.6 times more epitope and 2.6 times more epitope containing MxA protein than corresponding NIPs. A proof-of-concept study demonstrates MxA protein binding to synthetic receptors, highlighting the potential of MIPs, analogous to antibodies, in overcoming current diagnostic challenges for precise detection of viral infection.


Subject(s)
Biomarkers , Molecular Docking Simulation , Molecular Imprinting , Myxovirus Resistance Proteins , Myxovirus Resistance Proteins/metabolism , Myxovirus Resistance Proteins/chemistry , Molecular Imprinting/methods , Virus Diseases/diagnosis , Humans
5.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38436247

ABSTRACT

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Subject(s)
Myxovirus Resistance Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Animals , Cell Line , Interferons/immunology , Interferons/metabolism , Mutation , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/enzymology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/growth & development , Porcine respiratory and reproductive syndrome virus/metabolism , Protein Binding , Swine/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
6.
BMC Infect Dis ; 24(1): 270, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429664

ABSTRACT

BACKGROUND: The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS: A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS: IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION: Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.


Subject(s)
COVID-19 , Forkhead Transcription Factors , Polymorphism, Single Nucleotide , Humans , Male , Antibodies, Neutralizing , COVID-19/genetics , COVID-19/metabolism , Forkhead Transcription Factors/genetics , Genotype , Haplotypes , Interferons/metabolism , Myxovirus Resistance Proteins/metabolism
7.
PeerJ ; 12: e16975, 2024.
Article in English | MEDLINE | ID: mdl-38406276

ABSTRACT

Background: The coexistence of diabetes mellitus (DM) and atherosclerosis (AS) is widespread, although the explicit metabolism and metabolism-associated molecular patterns (MAMPs) responsible for the correlation are still unclear. Methods: Twenty-four genetically wild-type male Ba-Ma mini pigs were randomly divided into five groups distinguished by different combinations of 90 mg/kg streptozotocin (STZ) intravenous injection and high-cholesterol/lipid (HC) or high-lipid (HL) diet feeding for 9 months in total. Pigs in the STZ+HC and STZ+HL groups were injected with STZ first and then fed the HC or HL diet for 9 months. In contrast, pigs in the HC+STZ and HL+STZ groups were fed the HC or HL diet for 9 months and injected with STZ at 3 months. The controls were only fed a regular diet for 9 months. The blood glucose and abdominal aortic plaque observed through oil red O staining were used as evaluation indicators for successful modelling of DM and AS. A microarray gene expression analysis of all subjects was performed. Results: Atherosclerotic lesions were observed only in the HC+STZ and STZ+HC groups. A total of 103 differentially expressed genes (DEGs) were identified as common between them. The most significantly enriched pathways of 103 common DEGs were influenza A, hepatitis C, and measles. The global and internal protein-protein interaction (PPI) networks of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The top 10 hub proteins, namely, ISG15, IRG6, IRF7, IFIT3, MX1, UBE2L6, DDX58, IFIT2, USP18, and IFI44L, drive aspects of DM and AS. MX1 and UBE2L6 were the intersection of internal and global PPI networks. The expression of MX1 and UBE2L6 was 507.22 ± 342.56 and 96.99 ± 49.92 in the HC+STZ group, respectively, which was significantly higher than others and may be linked to the severity of hyperglycaemia-related atherosclerosis. Further PPI network analysis of calcium/micronutrients, including MX1 and UBE2L6, consisted of 58 and 18 nodes, respectively. The most significantly enriched KEGG pathways were glutathione metabolism, pyrimidine metabolism, purine metabolism, and metabolic pathways. Conclusions: The global and internal PPI network of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The intersection of the nodes of internal and global PPI networks was MX1 and UBE2L6, suggesting their key role in the comorbidity mechanism of DM and AS. This inference was partly verified by the overexpression of MX1 and UBE2L6 in the HC+STZ group but not others. Further calcium- and micronutrient-related enriched KEGG pathway analysis supported that MX1 and UBE2L6 may affect the inflammatory response through micronutrient metabolic pathways, conceptually named metaflammation. Collectively, MX1 and UBE2L6 may be potential common biomarkers for DM and AS that may reveal metaflammatory aspects of the pathological process, although proper validation is still needed to determine their contribution to the detailed mechanism.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Animals , Male , Atherosclerosis/genetics , Diabetes Mellitus/pathology , Lipids , Micronutrients , Myxovirus Resistance Proteins/metabolism , Streptozocin , Swine , Swine, Miniature/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
9.
J Biomol Struct Dyn ; 42(7): 3520-3534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37227778

ABSTRACT

The Myxovirus resistance (Mx) proteins are critical effectors belonging to the super-family of guanidine triphosphatase, often stimulated by type I interferon (IFN) and mediates antiviral responses to restrict the replication of numerous viral genes in fishes. In teleosts, Mx proteins display diverse and complicated antiviral activity in different species. The present investigation seeks to characterize the Mx gene from Labeo catla upon induction by double-stranded (ds) RNA, polyinosinic-polycytidylic acid, (poly I: C). Molecular modeling and all-atoms molecular dynamics (MD) simulations were employed to understand the architecture of the GTPase domain and its plausible mode of GTP recognition in Mx protein. The full-length L. catla Mx (LcMx) gene sequence (1821 bp nucleotides) encodes an open reading frame of 606 amino acids. Domain search indicated conserved tripartite domain architecture of LcMx and forms a major cluster with the Mx from other teleosts. The positively charged Arginine and polar Glutamine residues from helix 3 and 4 of stalk region LcMx aid in homo-oligomerization. MD simulation portrayed the role of conserved critical residues aid in GTP recognition by the GTPase domain which perfectly corroborates with experimental findings and prior MD studies. After injection of poly I:C, the temporal mRNA profile showed that LcMx expression was significantly elevated in the spleen, brain, kidney, liver, muscle, heart, intestine, and gill tissues. Collectively, these results suggest that the elevated expression of the major innate immune defense gene Mx was able to inhibit the poly I: C mediated virulence in fish.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cyprinidae , Poly I-C , Animals , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/metabolism , Poly I-C/pharmacology , Amino Acid Sequence , Cyprinidae/metabolism , Proteins/metabolism , GTP Phosphohydrolases/metabolism , Antiviral Agents , Guanosine Triphosphate
10.
Biol Res ; 56(1): 67, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38066591

ABSTRACT

BACKGROUND: Growing evidence has suggested that Type I Interferon (I-IFN) plays a potential role in the pathogenesis of Down Syndrome (DS). This work investigates the underlying function of MX1, an effector gene of I-IFN, in DS-associated transcriptional regulation and phenotypic modulation. METHODS: We performed assay for transposase-accessible chromatin with high-throughout sequencing (ATAC-seq) to explore the difference of chromatin accessibility between DS derived amniocytes (DSACs) and controls. We then combined the annotated differentially expressed genes (DEGs) and enriched transcriptional factors (TFs) targeting the promoter region from ATAC-seq results with the DEGs in RNA-seq, to identify key genes and pathways involved in alterations of biological processes and pathways in DS. RESULTS: Binding motif analysis showed a significant increase in chromatin accessibility of genes related to neural cell function, among others, in DSACs, which is primarily regulated by members of the activator protein-1 (AP-1) transcriptional factor family. Further studies indicated that MX Dynamin Like GTPase 1 (MX1), defined as one of the key effector genes of I-IFN, is a critical upstream regulator. Its overexpression induced expression of AP-1 TFs and mediated inflammatory response, thus leading to decreased cellular viability of DS cells. Moreover, treatment with specific AP-1 inhibitor T-5224 improved DS-associated phenotypes in DSACs. CONCLUSIONS: This study demonstrates that MX1-mediated AP-1 activation is partially responsible for cellular dysfunction of DS. T-5224 effectively ameliorated DS-associated phenotypes in DSACs, suggesting it as a potential treatment option for DS patients.


Subject(s)
Down Syndrome , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Chromatin Immunoprecipitation Sequencing , RNA-Seq , Down Syndrome/drug therapy , Down Syndrome/genetics , Chromatin , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism
11.
J Virol ; 97(10): e0083023, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796130

ABSTRACT

IMPORTANCE: Herpesviruses present a major global disease burden. Understanding the host cell mechanisms that block viral infections, as well as how viruses can evolve to counteract these host defenses, is critically important for understanding viral disease pathogenesis. This study reveals that the major human variant of the antiviral protein myxovirus resistance protein B (MxB) inhibits the human pathogen herpes simplex virus (HSV-1), whereas a minor human variant and orthologous MxB genes from even closely related primates do not. Thus, in contrast to the many antagonistic virus-host interactions in which the virus is successful in thwarting the host's defense systems, here the human gene appears to be at least temporarily winning at this interface of the primate-herpesvirus evolutionary arms race. Our findings further show that a polymorphism at amino acid 83 in a small fraction of the human population is sufficient to abrogate MxB's ability to inhibit HSV-1, which could have important implications for human susceptibility to HSV-1 pathogenesis.


Subject(s)
Herpesvirus 1, Human , Host Microbial Interactions , Myxovirus Resistance Proteins , Polymorphism, Genetic , Animals , Humans , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Host Microbial Interactions/genetics , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Primates/genetics , Primates/virology , Species Specificity
12.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37243140

ABSTRACT

Mx proteins are key factors of the innate intracellular defense mechanisms that act against viruses induced by type I/III interferons. The family Peribunyaviridae includes many viruses of veterinary importance, either because infection results in clinical disease or because animals serve as reservoirs for arthropod vectors. According to the evolutionary arms race hypothesis, evolutionary pressures should have led to the selection of the most appropriate Mx1 antiviral isoforms to resist these infections. Although human, mouse, bat, rat, and cotton rat Mx isoforms have been shown to inhibit different members of the Peribunyaviridae, the possible antiviral function of the Mx isoforms from domestic animals against bunyaviral infections has, to our knowledge, never been studied. Herein, we investigated the anti-Schmallenberg virus activity of bovine, canine, equine, and porcine Mx1 proteins. We concluded that Mx1 has a strong, dose-dependent anti-Schmallenberg activity in these four mammalian species.


Subject(s)
Interferon Type I , RNA Viruses , Animals , Cattle , Horses , Dogs , Swine , Mice , Humans , Interferon Type I/metabolism , Interferon Lambda , GTP Phosphohydrolases/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Antiviral Agents/metabolism , Proteins/metabolism , RNA Viruses/metabolism , Mammals
13.
J Virol ; 97(2): e0193822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749070

ABSTRACT

Mammalian myxovirus resistance (Mx) proteins are interferon-induced, large dynamin-like GTPases with a broad antiviral spectrum. Here, we analyzed the antiviral activity of selected mammalian Mx1 proteins against Thogoto virus (THOV). Of those, equine Mx1 (eqMx1) showed antiviral activity comparable to that of the human MX1 gene product, designated huMxA, whereas most Mx1 proteins were antivirally inactive. We previously demonstrated that the flexible loop L4 protruding from the stalk domain of huMxA, and especially the phenylalanine at position 561 (F561), determines its antiviral specificity against THOV (P. S. Mitchell, C. Patzina, M. Emerman, O. Haller, et al., Cell Host Microbe 12:598-604, 2012, https://doi.org/10.1016/j.chom.2012.09.005). However, despite the similar antiviral activity against THOV, the loop L4 sequence of eqMx1 substantially differs from the one of huMxA. Mutational analysis of eqMx1 L4 identified a tryptophan (W562) and the adjacent glycine (G563) as critical antiviral determinants against THOV, whereas the neighboring residues could be exchanged for nonpolar alanines without affecting the antiviral activity. Further mutational analyses revealed that a single bulky residue at position 562 and the adjacent tiny residue G563 were sufficient for antiviral activity. Moreover, this minimal set of L4 amino acids transferred anti-THOV activity to the otherwise inactive bovine Mx1 (boMx1) protein. Taken together, our data suggest a fairly simple architecture of the antiviral loop L4 that could serve as a mutational hot spot in an evolutionary arms race between Mx-escaping viral variants and their hosts. IMPORTANCE Most mammals encode two paralogs of the interferon-induced Mx proteins: Mx1, with antiviral activity largely against RNA viruses, like orthomyxoviruses and bunyaviruses; and Mx2, which is antivirally active against HIV-1 and herpesviruses. The human Mx1 protein, also called huMxA, is the best-characterized example of mammalian Mx1 proteins and was recently shown to prevent zoonotic virus transmissions. To evaluate the antiviral activity of other mammalian Mx1 proteins, we used Thogoto virus, a tick-transmitted orthomyxovirus, which is efficiently blocked by huMxA. Interestingly, we detected antiviral activity only with equine Mx1 (eqMx1) but not with other nonprimate Mx1 proteins. Detailed functional analysis of eqMx1 identified amino acid residues in the unstructured loop L4 of the stalk domain critical for antiviral activity. The structural insights of the present study explain the unique position of eqMx1 antiviral activity within the collection of nonhuman mammalian Mx1 proteins.


Subject(s)
Horses , Myxovirus Resistance Proteins , Thogotovirus , Animals , Cattle , Humans , Interferons/metabolism , Molecular Structure , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Thogotovirus/genetics
14.
J Biol Chem ; 299(1): 102747, 2023 01.
Article in English | MEDLINE | ID: mdl-36436557

ABSTRACT

Myxovirus resistance protein 1 (MX1) and MX2 are homologous, dynamin-like large GTPases, induced upon interferon exposure. Human MX1 (HsMX1) is known to inhibit many viruses, including influenza A virus, by likely acting at various steps of their life cycles. Despite decades of studies, the mechanism(s) of action with which MX1 proteins manage to inhibit target viruses is not fully understood. MX1 proteins are mechano-enzymes and share a similar organization to dynamin, with a GTPase domain and a carboxy-terminal stalk domain, connected by a bundle signaling element. These three elements are known to be essential for antiviral activity. HsMX1 has two unstructured regions, the L4 loop, also essential for antiviral activity, and a short amino (N)-terminal region, which greatly varies between MX1 proteins of different species. The role of this N-terminal domain in antiviral activity is not known. Herein, using mutagenesis, imaging, and biochemical approaches, we demonstrate that the N-terminal domain of HsMX1 is essential for antiviral activity against influenza A virus, Vesicular Stomatitis Virus, and La Crosse virus. Furthermore, we pinpoint a highly conserved leucine within this region, which is absolutely crucial for human, mouse, and bat MX1 protein antiviral activity. Importantly, mutation of this leucine does not compromise GTPase activity or oligomerization capabilities but does modify MX1 protein subcellular localization. The discovery of this essential and highly conserved residue defines this region as key for antiviral activity and may reveal insights as to the mechanism(s) of action of MX1 proteins.


Subject(s)
Influenza A virus , Myxovirus Resistance Proteins , RNA Viruses , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Influenza A virus/metabolism , Influenza A virus/pathogenicity , Leucine , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Proteins/metabolism , RNA Viruses/metabolism , RNA Viruses/pathogenicity
15.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361529

ABSTRACT

We previously discovered that exogenously expressed GFP-tagged cytoplasmic human myxovirus resistance protein (MxA), a major antiviral effector of Type I and III interferons (IFNs) against several RNA- and DNA-containing viruses, existed in the cytoplasm in phase-separated membraneless biomolecular condensates of varying sizes and shapes with osmotically regulated disassembly and reassembly. In this study we investigated whether cytoplasmic IFN-α-induced endogenous human MxA structures were also biomolecular condensates, displayed hypotonic osmoregulation and the mechanisms involved. Both IFN-α-induced endogenous MxA and exogenously expressed GFP-MxA formed cytoplasmic condensates in A549 lung and Huh7 hepatoma cells which rapidly disassembled within 1-2 min when cells were exposed to 1,6-hexanediol or to hypotonic buffer (~40-50 mOsm). Both reassembled into new structures within 1-2 min of shifting cells to isotonic culture medium (~330 mOsm). Strikingly, MxA condensates in cells continuously exposed to culture medium of moderate hypotonicity (in the range one-fourth, one-third or one-half isotonicity; range 90-175 mOsm) first rapidly disassembled within 1-3 min, and then, in most cells, spontaneously reassembled 7-15 min later into new structures. This spontaneous reassembly was inhibited by 2-deoxyglucose (thus, was ATP-dependent) and by dynasore (thus, required membrane internalization). Indeed, condensate reassembly was preceded by crowding of the cytosolic space by large vacuole-like dilations (VLDs) derived from internalized plasma membrane. Remarkably, the antiviral activity of GFP-MxA against vesicular stomatitis virus survived hypoosmolar disassembly and subsequent reassembly. The data highlight the exquisite osmosensitivity of MxA condensates, and the preservation of antiviral activity in the face of hypotonic stress.


Subject(s)
Antiviral Agents , GTP Phosphohydrolases , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , GTP Phosphohydrolases/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Osmoregulation , Biomolecular Condensates , Interferon-alpha/pharmacology , Interferon-alpha/metabolism , Cytoplasm/metabolism , Proteins/metabolism
16.
Viruses ; 14(11)2022 10 24.
Article in English | MEDLINE | ID: mdl-36366429

ABSTRACT

The interferon-induced myxovirus resistance protein A (MxA) is a potent restriction factor that prevents zoonotic infection from influenza A virus (IAV) subtype H7N9. Individuals expressing antivirally inactive MxA variants are highly susceptible to these infections. However, human-adapted IAVs have acquired specific mutations in the viral nucleoprotein (NP) that allow escape from MxA-mediated restriction but that have not been observed in MxA-sensitive, human H7N9 isolates. To date, it is unknown whether H7N9 can adapt to escape MxA-mediated restriction. To study this, we infected Rag2-knockout (Rag2-/-) mice with a defect in T and B cell maturation carrying a human MxA transgene (MxAtg/-Rag2-/-). In these mice, the virus could replicate for several weeks facilitating host adaptation. In MxAtg/-Rag2-/-, but not in Rag2-/- mice, the well-described mammalian adaptation E627K in the viral polymerase subunit PB2 was acquired, but no variants with MxA escape mutations in NP were detected. Utilizing reverse genetics, we could show that acquisition of PB2 E627K allowed partial evasion from MxA restriction in MxAtg/tg mice. However, pretreatment with type I interferon decreased viral replication in these mice, suggesting that PB2 E627K is not a true MxA escape mutation. Based on these results, we speculate that it might be difficult for H7N9 to acquire MxA escape mutations in the viral NP. This is consistent with previous findings showing that MxA escape mutations cause severe attenuation of IAVs of avian origin.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Mice , Influenza A Virus, H7N9 Subtype/genetics , Mammals , Mutation , Nucleoproteins/genetics , Virus Replication , Zoonoses , Myxovirus Resistance Proteins/metabolism
17.
BMC Infect Dis ; 22(1): 755, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36171547

ABSTRACT

BACKGROUND: In this retrospective cohort study, we explored the correlation of blood human myxovirus resistance protein A (MxA) level with severity of disease in hospitalized COVID-19 patients. METHODS: All 304 patients admitted for COVID-19 in our hospital until 30th of April 2021 were included in this study. MxA was measured from peripheral blood samples in 268 cases. Patients were divided into groups based on their level of MxA on admission. We studied baseline characteristics and severity of disease on admission based on clinical parameters and inflammatory biomarker levels in each group. Severity of disease during hospitalization was determined by the applied level of respiratory support, by the usage of corticosteroids and by the duration of hospitalization. RESULTS: Higher MxA levels on admission were associated with a shorter duration of symptoms before admission, and with more severe disease. Adjusted Odds Ratios for any respiratory support were 9.92 (95%CI 2.11-46.58; p = 0.004) in patients with MxA between 400 µg/L and 799 µg/L (p = 0.004) and 20.08 (95%CI 4.51-89.44; p < 0.001) in patients with MxA ≥ 800 µg/L in comparison with patients with initial MxA < 400 µg/L. The usage of corticosteroids was significantly higher in the high-MxA group (77%) in comparison with the intermediate-MxA group (62%, p = 0.013) and low-MxA group (47%, p < 0.001). CONCLUSIONS: Higher initial levels of MxA were associated with more severe COVID-19. MxA may be a helpful additional biomarker to predict the severity of the disease.


Subject(s)
COVID-19 , Orthomyxoviridae , Biomarkers , Humans , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Retrospective Studies , Staphylococcal Protein A
18.
Fish Shellfish Immunol ; 129: 182-190, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058437

ABSTRACT

Salmonid alphavirus (SAV) infection of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) causes pancreas disease (PD) with typical inflammatory responses, such as necrosis of the exocrine pancreas, cardiomyopathy and skeletal myopathy. However, the pathogenic mechanism underlying SAV infection is still unclear. Inflammation may cause damage to the body, but it is a defense response against infection by pathogenic microorganisms, of which nuclear factor-kappa B (NF-κB) is the main regulator. This study revealed that SAV can activate NF-κB, of which the viral nonstructural protein Nsp2 is the major activating protein. SAV activates the NF-κB signaling pathway by simultaneously up-regulating TLR3, 7, 8 and then the expression of the signaling molecule myeloid differentiation factor 88 (Myd88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). We found that Nsp2 can induce IκB degradation and p65 phosphorylation and transnucleation, and activate NF-κB downstream inflammatory cytokines. Nsp2 may simultaneously activate NF-κB through TLR3,7,8-dependent signaling pathways. Overexpression of Nsp2 can up-regulate mitochondrial antiviral signaling protein (MAVS) and then promote the expression of IFNa1 and antiviral protein Mx, which inhibits viral replication. This study shows that Nsp2 acts as a key activator protein for the NF-κB signaling pathway, which induces inflammation post-SAV infection. This study systematically analyzes the molecular mechanism of SAV activation of the NF-κB signaling pathway, and provides a theoretical basis for revealing the mechanism of innate immune response and inflammatory injury caused by SAV.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Oncorhynchus mykiss , Salmo salar , Alphavirus/physiology , Alphavirus Infections/veterinary , Animals , Antiviral Agents , Cytokines/metabolism , Inflammation/veterinary , Myeloid Differentiation Factor 88/metabolism , Myxovirus Resistance Proteins/metabolism , NF-kappa B/metabolism , Oncorhynchus mykiss/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 3/metabolism , Viral Nonstructural Proteins
19.
Molecules ; 27(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014378

ABSTRACT

Multidrug resistance (MDR), having a multifactorial nature, is one of the major clinical problems causing the failure of anticancer therapy. The aim of this study was to examine the antitumour effects of selected pyridinium salts, 1-methyl-3-nitropyridine chloride (MNP) and 3,3,6,6,10-pentamethyl-3,4,6,7-tetrahydro-[1,8(2H,5H)-dion]acridine chloride (MDION), on sensitive leukaemia HL60 cells and resistant topoisomerase II-defective HL60/MX2 cells. Cell growth was determined by the MTT test. Intracellular ROS level was measured with the aid of 2',7'-DCF-DA. The cell cycle distribution was investigated by performing PI staining. DSB formation was examined using the γ-H2AX histone phosphorylation assay. The activity of caspase-3 and caspase-8 was measured with the use of the FLICA test. The assays for examining the lysosome membrane permeabilization were carried out with the aid of LysoTracker Green DND-26. Both studied compounds exerted very similar cytotoxic activities towards sensitive HL60 cells and their MDR counterparts. They modulated the cellular ROS level in a dose-dependent and time-dependent manner and significantly increased the percentage of sensitive HL60 and resistant HL60/MX2 cells with sub-diploid DNA (sub-G1 fraction). However, the induction of DSB formation was not a significant mechanism of action of these pyridinium salts in studied cells. Both examined compounds triggered caspase-3/caspase-8-dependent apoptosis of sensitive HL60 cells and their MDR counterparts. Additionally, the findings of the study indicate that lysosomes may also participate in the programmed death of HL60 as well as HL60/MX2 cells induced by MDION. The data obtained in this work showed that both examined pyridinium salts, MNP and MDION, are able to retain high antileukaemic effects against multidrug resistant topoisomerase II-defective HL60/MX2 cells.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II , Leukemia , Apoptosis , Caspase 3/metabolism , Caspase 8/metabolism , Chlorides/pharmacology , DNA Topoisomerases, Type II/metabolism , Drug Resistance, Neoplasm , HL-60 Cells , Humans , Myxovirus Resistance Proteins/metabolism , Myxovirus Resistance Proteins/pharmacology , Reactive Oxygen Species/metabolism , Salts/metabolism , Salts/pharmacology
20.
mBio ; 13(4): e0171422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35880880

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) infection is potently inhibited by human myxovirus resistance 2 (MX2/MxB), which binds to the viral capsid and blocks the nuclear import of viral DNA. We have recently shown that phosphorylation is a key regulator of MX2 antiviral activity, with phosphorylation of serine residues at positions 14, 17, and 18 repressing MX2 function. Here, we extend the study of MX2 posttranslational modifications and identify serine and threonine phosphorylation in all domains of MX2. By substituting these residues with aspartic acid or alanine, hence mimicking the presence or absence of a phosphate group, respectively, we identified key positions that control MX2 antiviral activity. Aspartic acid substitutions of residues Ser306 or Thr334 and alanine substitutions of Thr343 yielded proteins with substantially reduced antiviral activity, whereas the presence of aspartic acid at positions Ser28, Thr151, or Thr343 resulted in enhanced activity: referred to as hypermorphic mutants. In some cases, these hypermorphic mutations, particularly when paired with other MX2 mutations (e.g., S28D/T151D or T151D/T343A) acquired the capacity to inhibit HIV-1 capsid mutants known to be insensitive to wild-type MX2, such as P90A or T210K, as well as MX2-resistant retroviruses such as equine infectious anemia virus (EIAV) and murine leukemia virus (MLV). This work highlights the complexity and importance of MX2 phosphorylation in the regulation of antiviral activity and in the selection of susceptible viral substrates. IMPORTANCE Productive infection by human immunodeficiency virus type-1 (HIV-1) requires the import of viral replication complexes into the nuclei of infected cells. Myxovirus resistance 2 (MX2/MxB) blocks this step, halting nuclear accumulation of viral DNA and virus replication. We recently demonstrated how phosphorylation of a stretch of three serines in the amino-terminal domain of MX2 inhibits the antiviral activity. Here, we identify additional positions in MX2 whose phosphorylation status reduces or enhances antiviral function (hypomorphic and hypermorphic variants, respectively). Importantly, hypermorphic mutant proteins not only increased inhibitory activity against wild-type HIV-1 but can also exhibit antiviral capabilities against HIV-1 capsid mutant viruses that are resistant to wild-type MX2. Furthermore, some of these proteins were also able to inhibit retroviruses that are insensitive to MX2. Therefore, we propose that phosphorylation comprises a major element of MX2 regulation and substrate determination.


Subject(s)
HIV Infections , HIV-1 , Alanine/metabolism , Animals , Antiviral Agents/metabolism , Aspartic Acid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA, Viral/metabolism , HIV-1/physiology , Horses/genetics , Humans , Mice , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Phosphorylation , Serine , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...