Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectromagnetics ; 23(8): 599-606, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12395415

ABSTRACT

Comparative investigation of the susceptibility of intact and primed neutrophils of the NMRI strain mice to low intensity millimeter wave (mm wave) irradiation (41.95 GHz) was performed. The specific absorption rate was 0.45 W/kg. Isolated neutrophils were primed by a chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) at a subthreshold concentration of 10 nM for 20 min, and then the cells were activated by 1 microM fMLP. Production of the reactive oxygen species (ROS) was estimated by the luminol dependent chemiluminescence technique. It was found that the preliminary mm wave irradiation of the resting cells at 20 degrees C did not act on the ROS production induced by the chemotactic peptide. The exposure of the primed cells results in a subsequent increase in the fMLP response. Therefore, the primed neutrophils are susceptible to the mm waves. Specific inhibitors of the protein kinases abolished the mm wave effect on the primed cells. The data indicate that protein kinases actively participate in transduction of the mm wave signal to effector molecules involved in neutrophil respiratory burst.


Subject(s)
Microwaves , N-Formylmethionine Leucyl-Phenylalanine/metabolism , N-Formylmethionine Leucyl-Phenylalanine/radiation effects , Neutrophils/immunology , Neutrophils/radiation effects , Protein Kinases/metabolism , Adjuvants, Immunologic/radiation effects , Animals , Cell Line , Dose-Response Relationship, Radiation , Male , Mice , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/drug effects , Protein Kinases/radiation effects , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/radiation effects , Respiratory Burst/drug effects , Respiratory Burst/radiation effects , Sensitivity and Specificity , Species Specificity
2.
J Recept Signal Transduct Res ; 18(2-3): 187-221, 1998.
Article in English | MEDLINE | ID: mdl-9651885

ABSTRACT

Chemoattractant receptors represent a major subset of the G-protein coupled receptor (GPCR) family. One of the best characterized, the N-formyl peptide receptor (FPR), participates in host defense responses of neutrophils. The features of the ligand which regulate its interaction with the FPR are well-known. By manipulating these features we have developed new ligands to probe structural and mechanistic aspects of the peptide-receptor interaction. Three ligand groups have been developed: 1) ligands containing a Lys residue located in positions 2 through 7 that can be conjugated to FITC (N-formyl-Met1-Lys2-Phe3-Phe4, N-formyl-Met1-Leu2-Lys3-Phe4, N-formyl-Met1-Leu2-Phe3-Lys4, N-formyl-Met1-Leu2-Phe3-Phe4-Lys5, N-formyl-nLeu1-Leu2-Phe3-nLeu4-Tyr5-Lys6 and N-formyl-Met1-Leu2-Phe3-Phe4-Gly5-Gly6-Lys7; 2) fluorescent pentapeptide ligands (N-formyl-Met-X-Phe-Phe-Lys(FITC) where X = Leu, Ala, Val or Gly); and 3) small crosslinking ligands where the photoaffinity crosslinker 4-azidosalicylic acid (ASA) was conjugated to Lys in positions 3 and 4 and p-benzoyl-phenylalanine (Bpa) was located in position 2 in N-formyl-Met1-Bpa2-Phe3-Tyr4. The peptides were characterized according to activity and affinity in human neutrophils and cell lines transfected with FPR. All of the peptides were agonists, with parallel affinity and activity. In the first group, the peptide activity decreases as Lys is placed closer to the N-formyl group and the activity is improved by 1-3 orders of magnitude by conjugation with FITC. In the second group, the dissociation rate of the peptide from the receptor increases as position 2 is replaced by aliphatic amino acids with smaller alkyl groups. In the third group, crosslinking ligands remain biologically active, display nM affinity and covalently label the FPR.


Subject(s)
Cross-Linking Reagents/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/chemistry , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Receptors, Immunologic/metabolism , Receptors, Peptide/metabolism , Animals , Azides/chemistry , Binding, Competitive , Cell Line , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/radiation effects , Humans , In Vitro Techniques , Ligands , Light , Mice , N-Formylmethionine Leucyl-Phenylalanine/analogs & derivatives , N-Formylmethionine Leucyl-Phenylalanine/chemistry , N-Formylmethionine Leucyl-Phenylalanine/radiation effects , Neutrophils/metabolism , Receptors, Formyl Peptide , Receptors, Immunologic/biosynthesis , Receptors, Peptide/biosynthesis , Salicylates/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...