Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.354
Filter
1.
Biomed Environ Sci ; 37(5): 471-478, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843920

ABSTRACT

Objective: Little is known about the association between whole-blood nicotinamide adenine dinucleotide (NAD +) levels and nabothian cysts. This study aimed to assess the association between NAD + levels and nabothian cysts in healthy Chinese women. Methods: Multivariate logistic regression analysis was performed to analyze the association between NAD + levels and nabothian cysts. Results: The mean age was 43.0 ± 11.5 years, and the mean level of NAD + was 31.3 ± 5.3 µmol/L. Nabothian cysts occurred in 184 (27.7%) participants, with single and multiple cysts in 100 (15.0%) and 84 (12.6%) participants, respectively. The total nabothian cyst prevalence gradually decreased from 37.4% to 21.6% from Q1 to Q4 of NAD + and the prevalence of single and multiple nabothian cysts also decreased across the NAD + quartiles. As compared with the highest NAD + quartile (≥ 34.4 µmol/L), the adjusted odds ratios with 95% confidence interval of the NAD + Q1 was 1.89 (1.14-3.14) for total nabothian cysts. The risk of total and single nabothian cysts linearly decreased with increasing NAD + levels, while the risk of multiple nabothian cysts decreased more rapidly at NAD + levels of 28.0 to 35.0 µmol/L. Conclusion: Low NAD + levels were associated with an increased risk of total and multiple nabothian cysts.


Subject(s)
NAD , Humans , Female , Adult , Middle Aged , NAD/blood , NAD/metabolism , Cysts/blood , Cysts/epidemiology , China/epidemiology
2.
Front Endocrinol (Lausanne) ; 15: 1384953, 2024.
Article in English | MEDLINE | ID: mdl-38836233

ABSTRACT

Background: Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood. Objective: Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism. Methods: Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings. Results: The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys. Conclusion: Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , NAD , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , NAD/metabolism , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Kidney/metabolism , Kidney/pathology
3.
NPJ Syst Biol Appl ; 10(1): 64, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830903

ABSTRACT

Fructosamine-3-kinases (FN3Ks) are a conserved family of repair enzymes that phosphorylate reactive sugars attached to lysine residues in peptides and proteins. Although FN3Ks are present across the Tree of Life and share detectable sequence similarity to eukaryotic protein kinases, the biological processes regulated by these kinases are largely unknown. To address this knowledge gap, we leveraged the FN3K CRISPR Knock-Out (KO) HepG2 cell line alongside an integrative multi-omics study combining transcriptomics, metabolomics, and interactomics to place these enzymes in a pathway context. The integrative analyses revealed the enrichment of pathways related to oxidative stress response, lipid biosynthesis (cholesterol and fatty acids), and carbon and co-factor metabolism. Moreover, enrichment of nicotinamide adenine dinucleotide (NAD) binding proteins and localization of human FN3K (HsFN3K) to mitochondria suggests potential links between FN3K and NAD-mediated energy metabolism and redox balance. We report specific binding of HsFN3K to NAD compounds in a metal and concentration-dependent manner and provide insight into their binding mode using modeling and experimental site-directed mutagenesis. Our studies provide a framework for targeting these understudied kinases in diabetic complications and metabolic disorders where redox balance and NAD-dependent metabolic processes are altered.


Subject(s)
Metabolic Networks and Pathways , Phosphotransferases (Alcohol Group Acceptor) , Humans , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Hep G2 Cells , Metabolic Networks and Pathways/genetics , Metabolomics/methods , NAD/metabolism , Oxidative Stress/physiology , Oxidative Stress/genetics , Multiomics
4.
Physiol Plant ; 176(3): e14340, 2024.
Article in English | MEDLINE | ID: mdl-38741259

ABSTRACT

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Subject(s)
Arabidopsis , Cysteine , Malate Dehydrogenase , NAD , Oxidation-Reduction , Plastids , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Cysteine/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Plastids/metabolism , Plastids/enzymology , NAD/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
5.
Bioorg Chem ; 147: 107418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703441

ABSTRACT

A key approach in developing green chemistry involves converting solar energy into chemical energy of biomolecules through photocatalysis. Photocatalysis can facilitate the regeneration of nicotinamide cofactors during redox processes. Nicotinamide cofactor biomimetics (NCBs) are economical substitutes for natural cofactors. Here, photocatalytic regeneration of NADH and reduced NCBs (NCBsred) using graphitic carbon nitride (g-C3N4) was developed. The process involves g-C3N4 as the photocatalyst, Cp*Rh(bpy)H2O2+ as the electron mediator, and Triethanolamine as the electron donor, facilitating the reduction of NAD+ and various oxidative NCBs (NCBsox) under light irradiation. Notably, the highest reduction yield of 48.32 % was achieved with BANA+, outperforming the natural cofactor NAD+. Electrochemical analysis reveals that the reduction efficiency and capacity of cofactors relies on their redox potentials. Additionally, a coupled photo-enzymatic catalysis system was explored for the reduction of 4-Ketoisophorone by Old Yellow Enzyme XenA. Among all the NCBsox and NAD+, the highest conversion ratio of over 99 % was obtained with BANA+. After recycled for 8 times, g-C3N4 maintained over 93.6 % catalytic efficiency. The photocatalytic cofactor regeneration showcases its outstanding performance with NAD+ as well as NCBsox. This work significantly advances the development of photocatalytic cofactor regeneration for artificial cofactors and its potential application.


Subject(s)
Biocatalysis , Oxidation-Reduction , Photochemical Processes , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Molecular Structure , NAD/chemistry , NAD/metabolism , Biomimetics , Niacinamide/chemistry , Niacinamide/metabolism , Nitrogen Compounds/chemistry , Graphite
6.
Biomolecules ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786009

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a ubiquitous molecule found within all cells, acting as a crucial coenzyme in numerous metabolic reactions. It plays a vital role in energy metabolism, cellular signaling, and DNA repair. Notably, NAD levels decline naturally with age, and this decline is associated with the development of various age-related diseases. Despite this established link, current genome-scale metabolic models, which offer powerful tools for understanding cellular metabolism, do not account for the dynamic changes in NAD concentration. This impedes our understanding of a fluctuating NAD level's impact on cellular metabolism and its contribution to age-related pathologies. To bridge this gap in our knowledge, we have devised a novel method that integrates altered NAD concentration into genome-scale models of human metabolism. This approach allows us to accurately reflect the changes in fatty acid metabolism, glycolysis, and oxidative phosphorylation observed experimentally in an engineered human cell line with a compromised level of subcellular NAD.


Subject(s)
Glycolysis , Models, Biological , NAD , NAD/metabolism , Humans , Oxidative Phosphorylation , Fatty Acids/metabolism , Energy Metabolism
7.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786103

ABSTRACT

Cigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE). N = 64 mice randomly distributed in eight groups were injected with NADH (two doses of 100 mg/kg or 200 mg/kg) or dexamethasone (2 mg/kg) before being exposed to CSE for up to 9 weeks. Additionally, NADH supplementation preserved lung antioxidant defenses by preventing the functional loss of key enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and the expression levels of glutathione (GSH) (n = 4, p < 0.001). It also reduced oxidative damage markers, such as malondialdehyde (MDA) and nitrites (n = 4, p < 0.001). A marked increase in tissue myeloperoxidase activity was assessed (MPO), confirming neutrophils implication in the inflammatory process. The latter was significantly ameliorated in the NADH-treated groups (p < 0.001). Finally, NADH prevented the CSE-induced secretion of cytokines such as Tumor Necrosis Factor alpha (TNF-α), IL-17, and IFN-y (n = 4, p < 0.001). Our study shows, for the first time, the clinical potential of NADH supplementation in preventing key features of COPD via its unique anti-inflammatory and antioxidant properties.


Subject(s)
Disease Models, Animal , Mice, Inbred BALB C , NAD , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/prevention & control , Pulmonary Disease, Chronic Obstructive/etiology , NAD/metabolism , Mice , Pneumonia/prevention & control , Pneumonia/metabolism , Pneumonia/pathology , Injections, Intraperitoneal , Smoke/adverse effects , Oxidative Stress/drug effects , Male , Antioxidants/metabolism , Antioxidants/pharmacology , Cytokines/metabolism , Lung/pathology , Lung/metabolism , Lung/drug effects , Peroxidase/metabolism
8.
Sci Rep ; 14(1): 12399, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811634

ABSTRACT

Age-related decline in mobility and cognition are associated with cellular senescence and NAD + depletion in dogs and people. A combination of a novel NAD + precursor and senolytic, LY-D6/2, was examined in this randomized controlled trial. Seventy dogs with mild to moderate cognitive impairment were enrolled and allocated into placebo, low or full dose groups. Primary outcomes were change in cognitive impairment measured with the owner-reported Canine Cognitive Dysfunction Rating (CCDR) scale and change in activity measured with physical activity monitors. Fifty-nine dogs completed evaluations at the 3-month primary endpoint, and 51 reached the 6-month secondary endpoint. There was a significant difference in CCDR score across treatment groups from baseline to the primary endpoint (p = 0.02) with the largest decrease in the full dose group. No difference was detected between groups using in house cognitive testing. There were no significant differences between groups in changes in measured activity. The proportion of dogs that improved in frailty and owner-reported activity levels and happiness was higher in the full dose group than other groups, however this difference was not significant. Adverse events occurred equally across groups. All groups showed improvement in cognition, frailty, and activity suggesting placebo effect and benefits of trial participation. We conclude that LY-D6/2 improves owner-assessed cognitive function over a 3-month period and may have broader, but more subtle effects on frailty, activity and happiness as reported by owners.


Subject(s)
Cognition , Cognitive Dysfunction , NAD , Animals , Dogs , Male , Female , NAD/metabolism , Dog Diseases/psychology , Humans
9.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791345

ABSTRACT

Doxorubicin (DOX) is a potent chemotherapeutic agent known for its multi-organ toxicity, especially in the heart, which limits its clinical application. The toxic side effects of DOX, including DNA damage, oxidative stress, mitochondrial dysfunction and cell apoptosis, are intricately linked to the involvement of nicotinamide adenine dinucleotide (NAD+). To assess the effectiveness of the NAD+ precursor nicotinamide mononucleotide (NMN) in counteracting the multi-organ toxicity of DOX, a mouse model was established through DOX administration, which led to significant reductions in NAD+ in tissues with evident injury, including the heart, liver and lungs. NMN treatment alleviated both multi-organ fibrosis and mortality in mice. Mechanistically, tissue fibrosis, macrophage infiltration and DOX-related cellular damage, which are potentially implicated in the development of multi-organ fibrosis, could be attenuated by NAD+ restoration. Our findings provide compelling evidence for the benefits of NMN supplementation in mitigating the adverse effects of chemotherapeutic drugs on multiple organs.


Subject(s)
Doxorubicin , Fibrosis , Nicotinamide Mononucleotide , Animals , Doxorubicin/adverse effects , Nicotinamide Mononucleotide/pharmacology , Mice , Dietary Supplements , Male , NAD/metabolism , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology
10.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735943

ABSTRACT

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Subject(s)
Glucose , Mesenchymal Stem Cells , Mitochondria , NAD , Osteogenesis , Sirtuin 1 , Mesenchymal Stem Cells/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteogenesis/physiology , Mice , Humans , Animals , Mitochondria/metabolism , Glucose/metabolism , NAD/metabolism , Cell Differentiation
11.
Nat Commun ; 15(1): 3954, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729958

ABSTRACT

Defense-associated sirtuin 2 (DSR2) systems are widely distributed across prokaryotic genomes, providing robust protection against phage infection. DSR2 recognizes phage tail tube proteins and induces abortive infection by depleting intracellular NAD+, a process that is counteracted by another phage-encoded protein, DSR Anti Defense 1 (DSAD1). Here, we present cryo-EM structures of Bacillus subtilis DSR2 in its apo, Tube-bound, and DSAD1-bound states. DSR2 assembles into an elongated tetramer, with four NADase catalytic modules clustered in the center and the regulatory-sensing modules distributed at four distal corners. Interestingly, monomeric Tube protein, rather than its oligomeric states, docks at each corner of the DSR2 tetramer to form a 4:4 DSR2-Tube assembly, which is essential for DSR2 NADase activity. DSAD1 competes with Tube for binding to DSR2 by occupying an overlapping region, thereby inhibiting DSR2 immunity. Thus, our results provide important insights into the assembly, activation and inhibition of the DSR2 anti-phage defense system.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Bacillus subtilis/immunology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Immune Evasion , Sirtuins/metabolism , Sirtuins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Protein Binding , Models, Molecular , NAD/metabolism
12.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731898

ABSTRACT

The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.


Subject(s)
Aging , NAD , Ovary , Humans , Female , NAD/metabolism , Aging/metabolism , Aging/physiology , Ovary/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism , Fertility/physiology , Reproduction/physiology
13.
Biochemistry ; 63(10): 1347-1358, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38691339

ABSTRACT

The physiological role of dihydroorotate dehydrogenase (DHOD) enzymes is to catalyze the oxidation of dihydroorotate to orotate in pyrimidine biosynthesis. DHOD enzymes are structurally diverse existing as both soluble and membrane-associated forms. The Family 1 enzymes are soluble and act either as conventional single subunit flavin-dependent dehydrogenases known as Class 1A (DHODA) or as unusual heterodimeric enzymes known as Class 1B (DHODB). DHODBs possess two active sites separated by ∼20 Å, each with a noncovalently bound flavin cofactor. NAD is thought to interact at the FAD containing site, and the pyrimidine substrate is known to bind at the FMN containing site. At the approximate center of the protein is a single Fe2S2 center that is assumed to act as a conduit, facilitating one-electron transfers between the flavins. We present anaerobic transient state analysis of a DHODB enzyme from Lactoccocus lactis. The data presented primarily report the exothermic reaction that reduces orotate to dihydroorotate. The reductive half reaction reveals rapid two-electron reduction that is followed by the accumulation of a four-electron reduced state when NADH is added in excess, suggesting that the initial two electrons acquired reside on the FMN cofactor. Concomitant with the first reduction is the accumulation of a long-wavelength absorption feature consistent with the blue form of a flavin semiquinone. Spectral deconvolution and fitting to a model that includes reversibility for the second electron transfer reveals equilibrium accumulation of a flavin bisemiquinone state that has features of both red and blue semiquinones. Single turnover reactions with limiting NADH and excess orotate reveal that the flavin bisemiquinone accumulates with reduction of the enzyme by NADH and decays with reduction of the pyrimidine substrate, establishing the bisemiquinone as a fractional state of the two-electron reduced intermediate observed.


Subject(s)
Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Lactococcus lactis/enzymology , Lactococcus lactis/metabolism , Oxidation-Reduction , Catalytic Domain , Kinetics , Flavin Mononucleotide/metabolism , Flavin Mononucleotide/chemistry , NAD/metabolism , NAD/chemistry , Catalysis , Flavins/metabolism , Biocatalysis , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry
14.
Cell Death Dis ; 15(5): 382, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821960

ABSTRACT

Impairment of autophagy leads to an accumulation of misfolded proteins and damaged organelles and has been implicated in plethora of human diseases. Loss of autophagy in actively respiring cells has also been shown to trigger metabolic collapse mediated by the depletion of nicotinamide adenine dinucleotide (NAD) pools, resulting in cell death. Here we found that the deficit in the autophagy-NAD axis underpins the loss of viability in cell models of a neurodegenerative lysosomal storage disorder, Niemann-Pick type C1 (NPC1) disease. Defective autophagic flux in NPC1 cells resulted in mitochondrial dysfunction due to impairment of mitophagy, leading to the depletion of both the reduced and oxidised forms of NAD as identified via metabolic profiling. Consequently, exhaustion of the NAD pools triggered mitochondrial depolarisation and apoptotic cell death. Our chemical screening identified two FDA-approved drugs, celecoxib and memantine, as autophagy activators which effectively restored autophagic flux, NAD levels, and cell viability of NPC1 cells. Of biomedical relevance, either pharmacological rescue of the autophagy deficiency or NAD precursor supplementation restored NAD levels and improved the viability of NPC1 patient fibroblasts and induced pluripotent stem cell (iPSC)-derived cortical neurons. Together, our findings identify the autophagy-NAD axis as a mechanism of cell death and a target for therapeutic interventions in NPC1 disease, with a potential relevance to other neurodegenerative disorders.


Subject(s)
Autophagy , Induced Pluripotent Stem Cells , NAD , Niemann-Pick Disease, Type C , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Humans , Autophagy/drug effects , NAD/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Memantine/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Cell Death/drug effects , Cell Survival/drug effects , Mitophagy/drug effects , Apoptosis/drug effects
15.
Int Immunopharmacol ; 134: 112193, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723372

ABSTRACT

Retinal neurodegenerative diseases are a category of refractory blinding eye conditions closely associated with oxidative stress induced by mitochondrial dysfunction in retinal cells. SARM1, a core driver molecule leading to axonal degeneration, possesses NAD+ enzyme (NADase) activity. However, the role of the SARM1-NAD+ axis in oxidative stress-induced retinal cell death remains unclear. Here, we employed the SARM1 NADase inhibitor DSRM-3716 and established a glucose oxidase (GOx)-induced oxidative stress cell model. We found that compared to the GOx group, the DSRM-3716 pre-treated group reduced the hydrolysis of NAD+, inhibited the elevation of oxidative stress markers induced by GOx, decreased mitochondrial dysfunction, lowered the phosphorylation level of JNK, and attenuated the occurrence of pyroptosis in retinal and nerve cells, thereby providing protection for neurite growth. Further utilization of the JNK activator Anisomycin activated JNK, revealed that the JNK/c-Jun pathway down-regulated NMNAT2 expression. Consequently, it reduced cellular NAD+ synthesis, exacerbated mitochondrial dysfunction and cell pyroptosis, and reversed the protective effect of DSRM-3716 on cells. In summary, the inhibition of SARM1 NADase activity substantially mitigates oxidative damage to retinal cells and mitochondrial damage. Additionally, JNK simultaneously serves as both an upstream and downstream regulator in the SARM1-NAD+ axis, regulating retinal cell pyroptosis and neurite injury. Thus, this study provides new insights into the pathological processes of retinal cell oxidative stress and identifies potential therapeutic targets for retinal neurodegenerative diseases.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , NAD , Oxidative Stress , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Oxidative Stress/drug effects , Animals , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , NAD/metabolism , Retina/pathology , Retina/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Cell Line , Pyroptosis/drug effects , Humans , NAD+ Nucleosidase/metabolism
16.
J Biotechnol ; 389: 22-29, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38697360

ABSTRACT

Rieske non-heme iron oxygenases (ROs) are redox enzymes essential for microbial biodegradation and natural product synthesis. These enzymes utilize molecular oxygen for oxygenation reactions, making them very useful biocatalysts due to their broad reaction scope and high selectivities. The mechanism of oxygen activation in ROs involves electron transfers between redox centers of associated protein components, forming an electron transfer chain (ETC). Although the ETC is essential for electron replenishment, it carries the risk of reactive oxygen species (ROS) formation due to electron loss during oxygen activation. Our previous study linked ROS formation to O2 uncoupling in the flavin-dependent reductase of the three-component cumene dioxygenase (CDO). In the present study, we extend this finding by investigating the effects of ROS formation on the multi-component CDO system in a cell-free environment. In particular, we focus on the effects of hydrogen peroxide (H2O2) formation in the presence of a NADH cofactor regeneration system on the catalytic efficiency of CDO in vitro. Based on this, we propose the implementation of hybrid systems with alternative (non-native) redox partners for CDO, which are highly advantageous in terms of reduced H2O2 formation and increased product formation. The hybrid system consisting of the RO-reductase from phthalate dioxygenase (PDR) and CDO proved to be the most promising for the oxyfunctionalization of indene, showing a 4-fold increase in product formation (20 mM) over 24 h (TTN of 1515) at a 3-fold increase in production rate.


Subject(s)
Hydrogen Peroxide , Oxygen , Oxygen/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxygenases/metabolism , Reactive Oxygen Species/metabolism , NAD/metabolism , Cell-Free System , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Electron Transport Complex III/metabolism
17.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776115

ABSTRACT

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


Subject(s)
ADP-ribosyl Cyclase 1 , Disease Models, Animal , Mice, Inbred C57BL , NAD , Optic Nerve Injuries , Reperfusion Injury , Retinal Ganglion Cells , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Mice , NAD/metabolism , Optic Nerve Injuries/metabolism , Electroretinography , Nerve Crush , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/physiology
18.
Bioresour Technol ; 402: 130784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701976

ABSTRACT

Thermoanaerobacterium aotearoense SCUT27 is a prominent producer of biofuels from lignocellulosic materials. To provide sufficient NAD(P)H for ethanol production, redox-related genes, including lactate dehydrogenase (ldh), redox-sensing transcriptional repressor (rex), and hydrogenase (hfsB), were knocked out. However, the growth of strain PRH (Δldh/Δrex/ΔhfsB) was suppressed due to the intracellular redox state imbalance with the increased NADH concentration. Coincidentally, when the Bcd-EtfAB (BCD) complex was overexpressed, the resulting strain PRH-B3 (Δldh/Δrex/ΔhfsB::BCD) grew rapidly and produced ethanol with a high yield. With lignocellulosic hydrolysates, PRH-BA (Δldh/Δrex/ΔhfsB::BCD::adhE) demonstrated high ethanol productivity and yield, reaching levels of 0.45-0.51 g/L/h and 0.46-0.53 g/g sugars, respectively. The study results shed light on the cofactor balance for cell stability and the high ferredoxin-NAD+ reductase activity of the BCD complex under an intracellular low redox state. They also provide an essential reference for developing strains for improved biofuel production.


Subject(s)
Ethanol , Thermoanaerobacterium , Ethanol/metabolism , Thermoanaerobacterium/metabolism , Thermoanaerobacterium/genetics , Thermoanaerobacterium/enzymology , Fermentation , NAD/metabolism , Oxidation-Reduction
19.
NPJ Syst Biol Appl ; 10(1): 55, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789545

ABSTRACT

Aerobic glycolysis, or the Warburg effect, is used by cancer cells for proliferation while producing lactate. Although lactate production has wide implications for cancer progression, it is not known how this effect increases cell proliferation and relates to oxidative phosphorylation. Here, we elucidate that a negative feedback loop (NFL) is responsible for the Warburg effect. Further, we show that aerobic glycolysis works as an amplifier of oxidative phosphorylation. On the other hand, quiescence is an important property of cancer stem cells. Based on the NFL, we show that both aerobic glycolysis and oxidative phosphorylation, playing a synergistic role, are required to achieve cell quiescence. Further, our results suggest that the cells in their hypoxic niche are highly proliferative yet close to attaining quiescence by increasing their NADH/NAD+ ratio through the severity of hypoxia. The findings of this study can help in a better understanding of the link among metabolism, cell cycle, carcinogenesis, and stemness.


Subject(s)
Cell Proliferation , Feedback, Physiological , Glycolysis , Neoplastic Stem Cells , Oxidative Phosphorylation , Warburg Effect, Oncologic , Humans , Glycolysis/physiology , Feedback, Physiological/physiology , Neoplastic Stem Cells/metabolism , Cell Proliferation/physiology , Neoplasms/metabolism , NAD/metabolism , Lactic Acid/metabolism , Models, Biological , Cell Line, Tumor , Cell Cycle/physiology
20.
Chem Commun (Camb) ; 60(46): 5932-5935, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757567

ABSTRACT

A novel NIR fluorescent probe based on quinoline-conjugated benzo[cd]indol dual-salt for NADH was developed. This probe swiftly detects and responds sensitively to both endogenous and exogenous NADH alterations, enabling imaging of NADH fluctuations in type II diabetic and AD model cells.


Subject(s)
Fluorescent Dyes , Mitochondria , NAD , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , NAD/analysis , NAD/chemistry , Mitochondria/metabolism , Mitochondria/chemistry , Humans , Quinolines/chemistry , Infrared Rays , Optical Imaging , Animals , Diabetes Mellitus, Type 2
SELECTION OF CITATIONS
SEARCH DETAIL
...