Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
1.
Cell Death Dis ; 15(6): 398, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844470

ABSTRACT

In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-ß1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-ß1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-ß1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.


Subject(s)
Ferroptosis , Fibrosis , Homeodomain Proteins , NADPH Oxidase 4 , Renal Insufficiency, Chronic , Ferroptosis/genetics , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Humans , Mice , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Male , Mice, Inbred C57BL , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , Kidney/pathology , Kidney/metabolism , Transforming Growth Factor beta1/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Cell Line
2.
PLoS One ; 19(5): e0303010, 2024.
Article in English | MEDLINE | ID: mdl-38748682

ABSTRACT

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Endothelial Cells , NADPH Oxidase 4 , Platelet Endothelial Cell Adhesion Molecule-1 , Up-Regulation , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Mice , Humans , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Mice, Knockout , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Retina/metabolism , Retina/pathology , Disease Models, Animal , Mice, Transgenic
3.
Int Immunopharmacol ; 134: 112197, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733826

ABSTRACT

BACKGROUND: In China, CRC incidence is escalating. The main hurdles are heterogeneity and drug resistance. This research delves into cellular senescence in CRC, aiming to devise a prognostic model and pinpoint mechanisms impacting drug resistance. METHODS: Mendelian randomization (MR) analysis confirmed the association between CRC and cellular aging. The Cancer Genome Atlas (TCGA)-CRC data served as the training set, with GSE38832 and GSE39582 as validation sets. Various bioinformatics methods were employed to construct and validate a risk model. CRC cells with NADPH Oxidase 4 (NOX4) knockout were generated using CRISPR-Cas9 technology. Protein blotting and colony formation assays elucidated the role of NOX4 in CRC cell aging and drug resistance. RESULTS: A prognostic model, derived from dataset analysis, uncovered a link between high-risk groups and cancer progression. Notable differences in the tumor microenvironment were observed between risk groups. Finally, NOX4 was found to be linked with aging and drug resistance in CRC. CONCLUSION: This research presents a novel senescence-based CRC prognosis model. It identifies NOX4's role in CRC drug resistance, suggesting it is a potential treatment target.


Subject(s)
Cellular Senescence , Colorectal Neoplasms , Drug Resistance, Neoplasm , NADPH Oxidase 4 , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Prognosis , Tumor Microenvironment , Cell Line, Tumor , Male , Female
4.
Int Immunopharmacol ; 135: 112303, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776855

ABSTRACT

Diabetic nephropathy (DN) is a common complication of diabetes, characterized by renal fibrosis and poor patient prognosis. Hederagenin (HDG) has shown promising improvement in chronic kidney disease (CKD) kidney fibrosis, but its mechanism in DN-induced kidney fibrosis remains unclear. In this study, a model of diabetic nephropathy (DN) in mice was induced by intraperitoneal injection of streptozocin (50 mg/kg), while in vitro, high glucose (25 mM) was used to induce HK2 cell damage, simulating tubular injury in DN kidneys. The improvement of HDG treatment intervention was evaluated by observing changes in renal function, pathological structural damage, and the expression of fibrosis-related proteins in renal tubular cells. The results demonstrate that HDG intervention alleviates renal dysfunction and pathological damage in DN mice, accompanied by reduced expression of fibrotic markers α-smooth muscle actin (α-SMA), fibronectin (FN) and Collagen-I. Mechanistically, this study found that HDG can inhibit ferroptosis and fibrosis induced by the ferroptosis inducer Erastin (1 µM) in renal tubular cells. Phosphorylation of Smad3 promotes ferroptosis in renal tubular cells. After using its specific inhibitor SIS3 (4 µM), the expression of downstream target protein NADPH oxidase 4 (NOX4) significantly decreases, while the level of glutathione peroxidase 4 (GPX4) is notably restored, mitigating ferroptosis. Smad3 overexpression attenuates the therapeutic effect of HDG on tubular cell fibrosis induced by high glucose. These results demonstrate HDG inhibits Smad3 phosphorylation, thereby reducing the expression of NOX4 and enhancing the expression of GPX4, ultimately attenuating ferroptosis induced renal fibrosis. These findings suggest that HDG offer therapeutic potential for DN renal fibrosis by targeting Smad3-mediated ferroptosis in renal tubular cells.


Subject(s)
Diabetic Nephropathies , Ferroptosis , Fibrosis , Mice, Inbred C57BL , NADPH Oxidase 4 , Oleanolic Acid , Signal Transduction , Smad3 Protein , Animals , Ferroptosis/drug effects , Smad3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Humans , Mice , Signal Transduction/drug effects , Male , Cell Line , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Kidney Tubules/pathology , Kidney Tubules/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism
5.
Bull Exp Biol Med ; 176(5): 548-554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38717568

ABSTRACT

We studied the molecular mechanisms of cross-adaptation to ionizing radiation (1 Gy) of lymphocytes isolated from rats subjected to emotional stress. The effects of chronic (CES; various types of stress exposure) and acute (AES; forced swimming) emotional stress in rats on indicators of oxidative stress, cell death, and levels of NRF2 and NOX4 proteins involved in the development of the adaptive response were analyzed in isolated lymphocytes. It was found that stress induced an adaptive response in rat lymphocytes and triggered processes similar to the adaptive response induced by low doses of ionizing radiation: an increase in the level of oxidized DNA and cell death, as well as an increase in the content of NOX4 and NRF2 proteins. In animals subjected to emotional stress, suppressed DNA oxidation in response to irradiation, reduced levels of protective factor NRF2, as well as lymphocyte death were observed.


Subject(s)
Lymphocytes , NF-E2-Related Factor 2 , Oxidative Stress , Radiation, Ionizing , Stress, Psychological , Animals , Lymphocytes/radiation effects , Lymphocytes/metabolism , Rats , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Stress, Psychological/metabolism , Male , Oxidative Stress/radiation effects , Rats, Wistar , Adaptation, Physiological/radiation effects , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , DNA Damage/radiation effects
6.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806451

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Subject(s)
Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , NADPH Oxidase 4 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Peritoneum/pathology , Pyrazolones , Pyridones
7.
Biochem Biophys Res Commun ; 714: 149968, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657445

ABSTRACT

BACKGROUND: Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown. METHODS: Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h. Experiment 2: Gastrocnemius muscles were collected from control-fed (CON-FED; n = 17), control-fasted (CON-FAST; n = 18), or alcohol-fed (ETOH-FED; n = 18) mice every 4hrs for 20hrs after saline or ethanol (5 g/kg). RESULTS: EtOH enhanced Superoxide dismutase 1 (Sod1) and NADPH Oxidase 4 (Nox4) from 24 to 48hr after the binge, while Sod2 and Nox2 were suppressed. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) increased 12hrs after intoxication. Cytochrome P450 oxidoreductase (Por), Heme oxygenase 1 (Ho1), Peroxiredoxin 6 (Prdx6), Glutamate-cysteine ligase catalytic subunit (Gclc), Glutamate-cysteine ligase modifier subunit (Gclm), and Glutathione-disulfide reductase (Gsr) were increased by ETOH starting 12-16hrs post-binge. Fasting had similar effects on Nrf2 compared to alcohol, but downstream targets of NRF2, including Por, Ho1, Gclc, and Gclm, were differentially altered with fasting and EtOH. CONCLUSION: These data suggest that acute alcohol intoxication induced markers of oxidative stress and antioxidant signaling through the NRF2 pathway and that there were effects of alcohol independent of a possible decrease in food intake caused by binge intoxication.


Subject(s)
Antioxidants , Binge Drinking , Ethanol , Muscle, Skeletal , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Female , Mice , Antioxidants/metabolism , Ethanol/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics
8.
Int Immunopharmacol ; 132: 112052, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593505

ABSTRACT

OBJECTIVE: We assessed NOX4 expression in gastric cancer (GC), its prognostic significance, and underlying mechanisms, focusing on promoting ferroptosis through increased ROS production. METHODS: We evaluated NOX4 expression in GC tissues via immunohistochemistry and analyzed correlations with clinicopathological characteristics using TCGA and clinical data. Impacts of manipulating NOX4 levels on GC cell invasiveness, proliferation, and sensitivity to ferroptosis inducers were investigated. RESULTS: Significantly higher NOX4 expression in GC tissues versus normal adjacent tissues correlated with decreased overall survival and increased tumor aggressiveness. NOX4 was an independent predictor of poor prognosis. Functionally, NOX4 manipulation influenced ROS levels, with overexpression enhancing production. Inhibition of NOX4 or application of antioxidants reduced cancer cell invasion and proliferation. Importantly, NOX4-overexpressing cells showed increased sensitivity to ferroptosis inducers, indicating synergistic effects between NOX4 and ferroptosis in suppressing GC progression. CONCLUSION: Our findings highlight NOX4's potential as a therapeutic target in GC, where modulation can enhance efficacy of ferroptosis-inducing treatments, offering a promising strategy for combating this malignancy.


Subject(s)
Cell Proliferation , Ferroptosis , NADPH Oxidase 4 , Neoplasm Invasiveness , Reactive Oxygen Species , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Ferroptosis/drug effects , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Female , Male , Middle Aged , Prognosis , Gene Expression Regulation, Neoplastic
9.
Aging (Albany NY) ; 16(8): 7437-7447, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663913

ABSTRACT

BACKGROUND: NADPH oxidase 4 (NOX4) has been proven to be associated with the prognosis of tumors in multiple cancers and can serve as a potential immunotherapy target to provide new treatment options for various tumors. In this study, our aim is to conduct an in-depth investigation of NOX4 across a range of cancer types to determine the relationship between NOX4 and tumors. METHODS: Utilizing large-scale transcriptomic and clinical data from public databases, a systematic examination of NOX4 expression patterns was performed in pan-cancer cohorts. Survival analysis, methylation analysis, and correlation studies were employed to assess the diagnostic and prognostic significance of NOX4 in diverse cancer types. Additionally, an exploration of the relationship between NOX4 expression and immune infiltration across various tumors was conducted. RESULTS: The analyses unveiled a consistent upregulation of NOX4 expression in multiple cancer types relative to normal tissues, indicating its potential as a universal cancer biomarker. Elevated NOX4 expression significantly correlated with poor overall survival in several cancers. Furthermore, the study demonstrated a robust correlation between NOX4 expression and immune cell infiltration, signifying its involvement in the modulation of the tumor microenvironment. CONCLUSIONS: This study imparts valuable insights into the potential applications of NOX4 in cancer research, highlighting its significance as a multifaceted biomarker with diagnostic, prognostic, and immunomodulatory implications across diverse malignancies.


Subject(s)
Biomarkers, Tumor , NADPH Oxidase 4 , Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology , DNA Methylation , Gene Expression Regulation, Neoplastic , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/mortality , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
10.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542437

ABSTRACT

NADPH oxidase enzymes (NOX) are involved in all stages of carcinogenesis, but their expression levels and prognostic value in breast cancer (BC) remain unclear. Thus, we aimed to assess the expression and prognostic value of NOX enzymes in BC samples using online databases. For this, mRNA expression from 290 normal breast tissue samples and 1904 BC samples obtained from studies on cBioPortal, Kaplan-Meier Plotter, and The Human Protein Atlas were analyzed. We found higher levels of NOX2, NOX4, and Dual oxidase 1 (DUOX1) in normal breast tissue. NOX1, NOX2, and NOX4 exhibited higher expression in BC, except for the basal subtype, where NOX4 expression was lower. DUOX1 mRNA levels were lower in all BC subtypes. NOX2, NOX4, and NOX5 mRNA levels increased with tumor progression stages, while NOX1 and DUOX1 expression decreased in more advanced stages. Moreover, patients with low expression of NOX1, NOX4, and DUOX1 had lower survival rates than those with high expression of these enzymes. In conclusion, our data suggest an overexpression of NOX enzymes in breast cancer, with certain isoforms showing a positive correlation with tumor progression.


Subject(s)
Breast Neoplasms , NADPH Oxidases , Humans , Female , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Dual Oxidases/genetics , Breast Neoplasms/genetics , Prognosis , Reactive Oxygen Species/metabolism , RNA, Messenger/genetics , Gene Expression , NADPH Oxidase 4/genetics , NADPH Oxidase 1/genetics
11.
Free Radic Biol Med ; 216: 24-32, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460742

ABSTRACT

Reactive oxygen species (ROS) produced by NADPH oxidases (NOX, a key source of ROS in vascular cells) are involved in the regulation of vascular tone, but this has been explored mainly for adult organisms. Importantly, the mechanisms of vascular tone regulation differ significantly in early postnatal ontogenesis and adulthood, while the vasomotor role of ROS in immature systemic arteries is poorly understood. We tested the hypothesis that the functional contribution of NADPH oxidase-derived ROS to the regulation of peripheral arterial tone is higher in the early postnatal period than in adulthood. We studied saphenous arteries from 10- to 15-day-old ("young") and 3- to 4-month-old ("adult") male rats using lucigenin-enhanced chemiluminescence, quantitative PCR, Western blotting, and isometric myography. We demonstrated that both basal and NADPH-stimulated superoxide anion radical (O2•-) production was significantly higher in the arteries from young in comparison to adult rats. Importantly, pan-inhibitor of NADPH oxidase VAS2870 (10 µM) reduced NADPH-induced O2•- production in arteries of young rats. Saphenous arteries of both young and adult rats demonstrated high levels of Nox2 and Nox4 mRNAs, while Nox1 and Nox3 mRNAs were not detected. The protein contents of NOX2 and NOX4 were significantly higher in arterial tissue of young compared to adult animals. Moreover, VAS2870 (10 µM) had no effect on methoxamine-induced contractile responses of adult arteries but decreased them significantly in young arteries; such effect of VAS2870 persisted after removal of the endothelium. Finally, NOX2 inhibitor GSK2795039 (10 µM), but not NOX1/4 inhibitor GKT137831 (10 µM) weakened methoxamine-induced contractile responses of arteries from young rats. Thus, ROS produced by NOX2 have a pronounced contractile influence in saphenous artery smooth muscle cells of young, but not adult rats, which is associated with the increased vascular content of NOX2 protein at this age.


Subject(s)
Arteries , NADPH Oxidases , Rats , Male , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , NADP , Methoxamine , Arteries/physiology , NADPH Oxidase 1/genetics , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Superoxides/metabolism
12.
Redox Biol ; 71: 103126, 2024 May.
Article in English | MEDLINE | ID: mdl-38503217

ABSTRACT

Hydrogen peroxide (H2O2) functions as a signaling molecule in diverse cellular processes. While cells have evolved the capability to detect and manage changes in H2O2 levels, the mechanisms regulating key H2O2-producing enzymes to maintain optimal levels, especially in pancreatic beta cells with notably weak antioxidative defense, remain unclear. We found that the protein EI24 responds to changes in H2O2 concentration and regulates the production of H2O2 by controlling the translation of NOX4, an enzyme that is constitutively active, achieved by recruiting an RNA-binding protein, RTRAF, to the 3'-UTR of Nox4. Depleting EI24 results in RTRAF relocating into the nucleus, releasing the brake on NOX4 translation. The excessive production of H2O2 by liberated NOX4 further suppresses the translation of the key transcription factor MafA, ultimately preventing its binding to the Ins2 gene promoter and subsequent transcription of insulin. Treatment with a specific NOX4 inhibitor or the antioxidant NAC reversed these effects and alleviated the diabetic symptoms in beta-cell specific Ei24-KO mice. This study revealed a new mechanism through which cells regulate oxidative stress at the translational level, involving an ER-tethered RNA-binding protein that controls the expression of the key H2O2-producing enzyme NOX4.


Subject(s)
Hydrogen Peroxide , NADPH Oxidases , Mice , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Hydrogen Peroxide/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidative Stress , Signal Transduction , Antioxidants/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
EMBO Mol Med ; 16(3): 596-615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379095

ABSTRACT

Psoriatic arthritis mutilans (PAM) is the rarest and most severe form of psoriatic arthritis, characterized by erosions of the small joints and osteolysis leading to joint disruption. Despite its severity, the underlying mechanisms are unknown, and no susceptibility genes have hitherto been identified. We aimed to investigate the genetic basis of PAM by performing massive parallel sequencing in sixty-one patients from the PAM Nordic cohort. We found rare variants in the NADPH oxidase 4 (NOX4) in four patients. In silico predictions show that the identified variants are potentially damaging. NOXs are the only enzymes producing reactive oxygen species (ROS). NOX4 is specifically involved in the differentiation of osteoclasts, the cells implicated in bone resorption. Functional follow-up studies using cell culture, zebrafish models, and measurement of ROS in patients uncovered that these NOX4 variants increase ROS levels both in vitro and in vivo. We propose NOX4 as the first candidate susceptibility gene for PAM. Our study links high levels of ROS caused by NOX4 variants to the development of PAM, offering a potential therapeutic target.


Subject(s)
Arthritis, Psoriatic , Animals , Humans , NADPH Oxidase 4/genetics , Reactive Oxygen Species , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/drug therapy , Zebrafish , Cell Differentiation
14.
Redox Biol ; 70: 103078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354631

ABSTRACT

Acute kidney injury (AKI) is a life-threatening health condition associated with increasing morbidity and mortality. Despite extensive research on the mechanisms underlying AKI, effective clinical tools for prediction and treatment remain scarce. Oxidative stress and mitochondrial damage play a critical role in AKI and dopamine D4 receptor (DRD4) has been confirmed to be associated with oxidative stress. In this study, we hypothesized that DRD4 could attenuate AKI through its antioxidative and antiapoptotic effects. In vivo, DRD4 was remarkably decreased in the kidneys of mice subjected to ischemia/reperfusion injury (IRI) or cisplatin treatment. Notably, DRD4 significantly attenuated nephrotoxicity by suppressing oxidative stress and enhancing mitochondrial bioenergetics through the downregulation of reactive oxygen species (ROS) generation and NADPH oxidase 4 (NOX4) expression. In vitro, DRD4 demonstrated the ability to ameliorate oxidative stress-induced apoptosis in HK-2 cells subjected to hypoxia/reoxygenation- or cisplatin treatment. Transcriptome sequencing revealed that, mechanistically, DRD4 reduced the expression of its downstream target, interferon-stimulated gene 15 (ISG15), suppressing NOX4 ISGylation, enhancing the ubiquitination of NOX4, leading to its degradation, and ultimately counteracting oxidative stress-induced AKI. Altogether, these findings underscore the significance of DRD4 in AKI and elucidate DRD4 as a potential protectant against IRI or cisplatin-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Mice , Animals , Cisplatin/adverse effects , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Interferons/adverse effects , Interferons/metabolism , Receptors, Dopamine D4/metabolism , Cell Line , Oxidative Stress , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Kidney/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Apoptosis
15.
Exp Eye Res ; 241: 109817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340945

ABSTRACT

Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.


Subject(s)
Cataract , Lens, Crystalline , MicroRNAs , Humans , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Oxidative Stress , Lens, Crystalline/metabolism , Apoptosis , Cataract/genetics , Cataract/metabolism , Epithelium/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics
16.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387281

ABSTRACT

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Tumor-Associated Macrophages , NADPH Oxidase 4/genetics , Reactive Oxygen Species , RNA, Small Interfering/genetics , Cell Proliferation , Chemokines/pharmacology , Chemokines/therapeutic use , Cell Line, Tumor , Chemokine CCL22/pharmacology , Chemokine CCL22/therapeutic use
17.
Clin Sci (Lond) ; 138(3): 103-115, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38237016

ABSTRACT

High-altitude pulmonary hypertension (HAPH) is a severe and progressive disease that can lead to right heart failure. Intermittent short-duration reoxygenation at high altitude is effective in alleviating HAPH; however, the underlying mechanisms are unclear. In the present study, a simulated 5,000-m hypoxia rat model and hypoxic cultured pulmonary artery smooth muscle cells (PASMCs) were used to evaluate the effect and mechanisms of intermittent short-duration reoxygenation. The results showed that intermittent 3-h/per day reoxygenation (I3) effectively attenuated chronic hypoxia-induced pulmonary hypertension and reduced the content of H2O2 and the expression of NADPH oxidase 4 (NOX4) in lung tissues. In combination with I3, while the NOX inhibitor apocynin did not further alleviate HAPH, the mitochondrial antioxidant MitoQ did. Furthermore, in PASMCs, I3 attenuated hypoxia-induced PASMCs proliferation and reversed the activated HIF-1α/NOX4/PPAR-γ axis under hypoxia. Targeting this axis offset the protective effect of I3 on hypoxia-induced PASMCs proliferation. The present study is novel in revealing a new mechanism for preventing HAPH and provides insights into the optimization of intermittent short-duration reoxygenation.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Animals , Rats , Altitude , Cell Proliferation , Cells, Cultured , Hydrogen Peroxide/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , PPAR gamma/metabolism , Pulmonary Artery/metabolism , Signal Transduction
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167039, 2024 03.
Article in English | MEDLINE | ID: mdl-38281712

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is a prevalent renal disorder with various risk factors. Emerging evidence indicates that the transcriptional factor CCAAT/enhancer binding protein alpha (C/EBPα) may be associated with renal fibrosis. However, the precise role of C/EBPα in CKD progression remains unexplored. METHODS: We investigated the involvement of C/EBPα in CKD using two distinct mouse models induced by folic acid (FA) and unilateral ureteral obstruction (UUO). Additionally, we used RNA sequencing and KEGG analysis to identify potential downstream pathways governed by C/EBPα. FINDINGS: Cebpa knockout significantly shielded mice from renal fibrosis and reduced reactive oxygen species (ROS) levels in both the FA and UUO models. Primary tubular epithelial cells (PTECs) lacking Cebpa exhibited reduced apoptosis and ROS accumulation following treatment with TGF-ß. RNA sequencing analysis suggested that apoptosis is among the primary pathways regulated by C/EBPα, and identified NADPH oxidoreductase 4 (NOX4) as a key protein upregulated upon C/EBPα induction (ICCB280). Treatment with l-Theanine, a potential NOX4 inhibitor, mitigated renal fibrosis and inflammation in both the FA and UUO mouse models. INTERPRETATION: Our study unveils a role for C/EBPα in suppressing renal fibrosis, mitigating ROS accumulation, and reducing cell apoptosis. Furthermore, we investigate whether these protective effects are mediated by C/EBPα's regulation of NOX4 expression. These findings present a promising therapeutic target for modulating ROS and apoptosis in renal tubular cells, potentially offering an approach to treating CKD and other fibrotic diseases.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Reactive Oxygen Species/metabolism , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/pharmacology , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Renal Insufficiency, Chronic/metabolism , Ureteral Obstruction/metabolism , Epithelial Cells/metabolism , Apoptosis , Fibrosis
19.
Obesity (Silver Spring) ; 32(2): 339-351, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086768

ABSTRACT

OBJECTIVE: By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic ß cells (ßNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of ß-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS: The authors performed basic phenotyping of ßNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1ß immunochemistry, and real-time polymerase chain reaction during coculturing of ß cells with macrophages. RESULTS: The phenotype of ßNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and ß cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1ß protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in ßNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS: Experimental evidence suggests that NOX4 pro-oxidant activity in ß cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.


Subject(s)
Diabetes Mellitus , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , Inflammation , Interleukin-1beta/metabolism , Mice, Inbred C57BL , NADPH Oxidase 4/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
20.
CNS Neurosci Ther ; 30(4): e14537, 2024 04.
Article in English | MEDLINE | ID: mdl-37994671

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress and oxidative stress are the major pathologies encountered after intracerebral hemorrhage (ICH). Inositol-requiring enzyme-1 alpha (IRE1α) is the most evolutionarily conserved ER stress sensor, which plays a role in monitoring and responding to the accumulation of unfolded/misfolded proteins in the ER lumen. Recent studies have shown that ER stress is profoundly related to oxidative stress in physiological or pathological conditions. The purpose of this study was to investigate the role of IRE1α in oxidative stress and the potential mechanism. METHODS: A mouse model of ICH was established by autologous blood injection. The IRE1α phosphokinase inhibitor KIRA6 was administrated intranasally at 1 h after ICH, antagomiR-25 and agomiR-25 were injected intraventricularly at 24 h before ICH. Western blot analysis, RT-qPCR, immunofluorescence staining, hematoma volume, neurobehavioral tests, dihydroethidium (DHE) staining, H2O2 content, brain water content, body weight, Hematoxylin and Eosin (HE) staining, Nissl staining, Morris Water Maze (MWM) and Elevated Plus Maze (EPM) were performed. RESULTS: Endogenous phosphorylated IRE1α (p-IRE1α), miR-25-3p, and Nox4 were increased in the ICH model. Administration of KIRA6 downregulated miR-25-3p expression, upregulated Nox4 expression, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, reduced body weight, aggravated spatial learning and memory deficits, and increased anxiety levels. Then antagomiR-25 further upregulated the expression of Nox4, promoted the level of oxidative stress, increased hematoma volume, exacerbated brain edema and neurological deficits, whereas agomiR-25 reversed the effects promoted by KIRA6. CONCLUSION: The IRE1α phosphokinase activity is involved in the oxidative stress response through miR-25/Nox4 pathway in the mouse ICH brain.


Subject(s)
Brain Edema , Imidazoles , MicroRNAs , Naphthalenes , Pyrazines , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Antagomirs/metabolism , Hydrogen Peroxide , Oxidative Stress , Cerebral Hemorrhage/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hematoma , Body Weight , NADPH Oxidase 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...