Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.878
Filter
1.
J Clin Immunol ; 44(5): 125, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760640

ABSTRACT

BACKGROUND: Chronic Granulomatous Disease (CGD) is a rare immunodeficiency disorder characterized by impaired phagocytic function, leading to recurrent infections and granuloma formation. Genetic mutations in NADPH oxidase complex components, such as CYBB, NCF1, NCF2, and CYBA genes, contribute to the pathogenesis. This case report explores the possible ocular and hematologic complications associated with CGD. CASE PRESENTATION: A 6-year-old girl with a history of vitrectomy, membranotomy, and laser therapy due to congenital blindness (diagnosed with chorioretinopathy) was referred to the hospital with generalized ecchymosis and thrombocytopenia. Diagnostic workup initially suggested chronic immune thrombocytopenic purpura (ITP). Subsequent admissions revealed necrotic wounds, urinary tract infections, and recurrent thrombocytopenia. Suspecting immunodeficiency, tests for CGD, Nitroblue tetrazolium (NBT) and dihydrorhodamine (DHR) were performed. She had a low DHR (6.7), and her NBT test was negative (0.0%). Her whole exome sequencing results confirmed autosomal recessive CGD with a homozygous NCF1 mutation. CONCLUSION: This case underscores the diverse clinical manifestations of CGD, including recurrent thrombocytopenia and possible early-onset ocular involvement. The diagnostic challenges highlight the importance of a multidisciplinary approach involving hematologists, immunologists, and ophthalmologists for accurate diagnosis and management. The rare coexistence of ITP in CGD emphasizes the intricate link between immunodeficiency and autoimmunity, requiring tailored therapeutic strategies.


Subject(s)
Granulomatous Disease, Chronic , Purpura, Thrombocytopenic, Idiopathic , Humans , Female , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/complications , Child , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/complications , NADPH Oxidases/genetics , Mutation , Exome Sequencing
2.
PLoS One ; 19(5): e0303010, 2024.
Article in English | MEDLINE | ID: mdl-38748682

ABSTRACT

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Endothelial Cells , NADPH Oxidase 4 , Platelet Endothelial Cell Adhesion Molecule-1 , Up-Regulation , Animals , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Mice , Humans , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Endothelial Cells/metabolism , Mice, Knockout , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Retina/metabolism , Retina/pathology , Disease Models, Animal , Mice, Transgenic
3.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704134

ABSTRACT

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Subject(s)
Endothelial Progenitor Cells , Hematopoiesis , PPAR delta , Reactive Oxygen Species , Humans , PPAR delta/metabolism , PPAR delta/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Reactive Oxygen Species/metabolism , Animals , Hematopoiesis/drug effects , Male , Female , Fluorouracil/pharmacology , Middle Aged , Mice , Thiazoles/pharmacology , NADPH Oxidases/metabolism , Tumor Suppressor Protein p53/metabolism , Adult , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/drug therapy
4.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805284

ABSTRACT

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Subject(s)
Cryoelectron Microscopy , NADPH Oxidase 2 , NADPH Oxidases , Phagocytes , Humans , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , NADPH Oxidase 2/chemistry , Phagocytes/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/chemistry , Protein Binding , Binding Sites , Granulomatous Disease, Chronic/metabolism , Granulomatous Disease, Chronic/genetics , Models, Molecular , Reactive Oxygen Species/metabolism
5.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720270

ABSTRACT

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Subject(s)
AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
6.
Article in Chinese | MEDLINE | ID: mdl-38563173

ABSTRACT

Objective:After selecting NCF2 based on bioinformatics, clinical experiments were conducted to verify the expression of NCF2 in chronic rhinosinusitis with nasal polyps to study its correlation. Methods:The differentially expressed genes(DEGs) between CRSwNP and non-CRS patients were explored using the CRS-related dataset from the gene expression omnibus GEO database. The weighted gene co-expression network(WGCNA) was used for cluster analysis. The expression and cell distribution of NCF2 in the tissues were determined by single gene enrichment analysis(GSEA), immune inflammatory infiltration analysis, and principal component(PCA) analysis. The expression degree of NCF2 in the tissues of the subjects was determined by immunohistochemistry, and the percentage of EOS in the peripheral blood of the subjects was detected and the correlation was analyzed. EOS in the tissues of the subjects were counted under a microscope and compared. Results:①The Venn diagram was obtained by crossing the module with the highest correlation between DEGs and WGCNA to determine the core gene NCF2. ②GSEA analysis showed that NCF2 was significantly related to the immunological processes such as allogeneic rejection and asthma. ③The area under the ROC curve was 1, indicating that NCF2 had diagnostic value for CRSwNP. ④NCF2 was highly expressed in nasal polyps, mainly distributed in monocytes and eosinophils. ⑤HE staining showed that the number of EOS in ECRSwNP tissues and the percentage of eosinophils in peripheral blood were higher than those in nonECRSwNP and control groups. ⑥The immunohistochemistry results showed that NCF2 was significantly expressed in the nasal polyps of ECRSwNP patients, which was higher than that in the nasal mucosa of nonECRSwNP group and control group. ⑦The expression of NCF2 in tissues was positively correlated with EOS count in ECRSwNP group and EOS expression in peripheral blood. Conclusion:The expression of NCF2 is increased in eosinophilic chronic rhinosinusitis with nasal polyps, and it is significantly correlated with the expression of eosinophils in peripheral blood and tissues, suggesting that NCF2 may be used as a basis for the intrinsic classification of ECRSwNP and a reference index for clinical diagnosis and treatment.


Subject(s)
Nasal Polyps , Rhinitis , Rhinosinusitis , Sinusitis , Humans , Nasal Polyps/metabolism , Rhinitis/surgery , Correlation of Data , Sinusitis/surgery , Eosinophils/metabolism , Chronic Disease , NADPH Oxidases
7.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612585

ABSTRACT

Hypercortisolism is known to affect platelet function. However, few studies have approached the effect of exogenous cortisol on human platelets, and the results obtained are conflicting and unconvincing. In this study, the effect of exogenous cortisol on several parameters indicative of oxidative status in human platelets has been analysed. We have found that cortisol stimulates ROS production, superoxide anion formation, and lipid peroxidation, with these parameters being in strict correlation. In addition, cortisol decreases GSH and membrane SH-group content, evidencing that the hormone potentiates oxidative stress, depleting platelet antioxidant defence. The involvement of src, syk, PI3K, and AKT enzymes in oxidative mechanisms induced by cortisol is shown. The main sources of ROS in cells can include uncontrolled increase of NADPH oxidase activity and uncoupled aerobic respiration during oxidative phosphorylation. Both mechanisms seem to be involved in ROS formation induced by cortisol, as the NADPH oxidase 1 inhibitor 2(trifluoromethyl)phenothiazine, and rotenone and antimycin A, complex I and III inhibitor, respectively, significantly reduce oxidative stress. On the contrary, the NADPH oxidase inhibitor gp91ds-tat, malate and NaCN, complex II and IV inhibitor, respectively, have a minor effect. It is likely that, in human platelets, oxidative stress induced by cortisol can be associated with venous and arterial thrombosis, greatly contributing to cardiovascular diseases.


Subject(s)
Hydrocortisone , Oxidative Stress , Humans , Hydrocortisone/pharmacology , Reactive Oxygen Species , Blood Platelets , NADPH Oxidases
8.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640072

ABSTRACT

NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2's requirement for activation.


Subject(s)
NADPH Oxidases , Oxidoreductases , Humans , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , X-Rays , Electron Transport , Oxidoreductases/metabolism , Flavins/chemistry , Flavins/metabolism
9.
Cell Rep ; 43(4): 114109, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613782

ABSTRACT

The gut must perform a dual role of protecting the host against toxins and pathogens while harboring mutualistic microbiota. Previous studies suggested that the NADPH oxidase Duox contributes to intestinal homeostasis in Drosophila by producing reactive oxygen species (ROS) in the gut that stimulate epithelial renewal. We find instead that the ROS generated by Duox in the Malpighian tubules leads to the production of Upd3, which enters the gut and stimulates stem cell proliferation. We describe in Drosophila the existence of a countercurrent flow system, which pushes tubule-derived Upd3 to the anterior part of the gut and stimulates epithelial renewal at a distance. Thus, our paper clarifies the role of Duox in gut homeostasis and describes the existence of retrograde fluid flow in the gut, collectively revealing a fascinating example of inter-organ communication.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Intestinal Mucosa , Malpighian Tubules , Reactive Oxygen Species , Animals , Malpighian Tubules/metabolism , Drosophila Proteins/metabolism , Reactive Oxygen Species/metabolism , Intestinal Mucosa/metabolism , Drosophila melanogaster/metabolism , NADPH Oxidases/metabolism , Dual Oxidases/metabolism , Dual Oxidases/genetics , Cell Proliferation , Homeostasis , Drosophila/metabolism
10.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677786

ABSTRACT

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Subject(s)
Apoptosis , Leupeptins , NADPH Oxidase 5 , NADPH Oxidases , Neuroblastoma , Proteasome Inhibitors , Superoxides , Humans , Apoptosis/drug effects , Apoptosis/genetics , Proteasome Inhibitors/pharmacology , Superoxides/metabolism , Cell Line, Tumor , Neuroblastoma/pathology , Neuroblastoma/metabolism , Leupeptins/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Acetylcysteine/pharmacology , Neurons/metabolism , Neurons/drug effects
11.
Redox Biol ; 72: 103151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593631

ABSTRACT

Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , NADPH Oxidase 2 , Reactive Oxygen Species , Salmonella typhimurium , Spermidine , Animals , Salmonella typhimurium/metabolism , Salmonella typhimurium/drug effects , Spermidine/metabolism , Mice , Macrophages/microbiology , Macrophages/metabolism , Macrophages/drug effects , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Polyamines/metabolism , Phagocytosis/drug effects , Salmonella Infections/microbiology , Salmonella Infections/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Host-Pathogen Interactions , Spermidine Synthase/metabolism , Spermidine Synthase/genetics , Oxidative Stress/drug effects
12.
Pflugers Arch ; 476(6): 1007-1018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613695

ABSTRACT

Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.


Subject(s)
Complement C5a , Membrane Potentials , Mice, Inbred C57BL , Neutrophils , Reactive Oxygen Species , Animals , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/physiology , Complement C5a/metabolism , Complement C5a/pharmacology , Reactive Oxygen Species/metabolism , Mice , Membrane Potentials/physiology , NADPH Oxidases/metabolism , Actin Cytoskeleton/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cell Movement/drug effects , Neutrophil Activation , NADPH Oxidase 2/metabolism
13.
Biochemistry ; 63(9): 1097-1106, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38669178

ABSTRACT

As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.


Subject(s)
NADPH Oxidases , Phytic Acid , Phytic Acid/metabolism , Phytic Acid/chemistry , NADPH Oxidases/metabolism , NADPH Oxidases/antagonists & inhibitors , Humans , Cell Membrane/metabolism , NADPH Oxidase 2/metabolism , Phosphatidylinositol Phosphates/metabolism
14.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Article in English | MEDLINE | ID: mdl-38597493

ABSTRACT

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Subject(s)
Paraquat , Renin-Angiotensin System , Rats , Animals , Male , Reactive Oxygen Species/metabolism , Paraquat/metabolism , Paraquat/pharmacology , Angiotensin II/metabolism , Angiotensin II/pharmacology , Creatinine/metabolism , Creatinine/urine , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Kidney , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Sodium/metabolism , Sodium/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology
15.
Biomolecules ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38672433

ABSTRACT

Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.


Subject(s)
Extracellular Traps , Neutrophils , Extracellular Traps/metabolism , Extracellular Traps/immunology , Humans , Neutrophils/metabolism , Neutrophils/immunology , Animals , NADPH Oxidases/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammation/metabolism , Inflammation/immunology , Inflammation/pathology
16.
J Agric Food Chem ; 72(13): 7130-7139, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38516841

ABSTRACT

Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.


Subject(s)
Flavanones , Sphingomyelin Phosphodiesterase , Toll-Like Receptor 4 , Mice , Animals , Toll-Like Receptor 4/genetics , Sphingomyelin Phosphodiesterase/genetics , Inflammation/drug therapy , Inflammation/genetics , NF-kappa B , Cytokines , NADPH Oxidases/genetics , Membrane Microdomains
17.
Free Radic Biol Med ; 216: 24-32, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460742

ABSTRACT

Reactive oxygen species (ROS) produced by NADPH oxidases (NOX, a key source of ROS in vascular cells) are involved in the regulation of vascular tone, but this has been explored mainly for adult organisms. Importantly, the mechanisms of vascular tone regulation differ significantly in early postnatal ontogenesis and adulthood, while the vasomotor role of ROS in immature systemic arteries is poorly understood. We tested the hypothesis that the functional contribution of NADPH oxidase-derived ROS to the regulation of peripheral arterial tone is higher in the early postnatal period than in adulthood. We studied saphenous arteries from 10- to 15-day-old ("young") and 3- to 4-month-old ("adult") male rats using lucigenin-enhanced chemiluminescence, quantitative PCR, Western blotting, and isometric myography. We demonstrated that both basal and NADPH-stimulated superoxide anion radical (O2•-) production was significantly higher in the arteries from young in comparison to adult rats. Importantly, pan-inhibitor of NADPH oxidase VAS2870 (10 µM) reduced NADPH-induced O2•- production in arteries of young rats. Saphenous arteries of both young and adult rats demonstrated high levels of Nox2 and Nox4 mRNAs, while Nox1 and Nox3 mRNAs were not detected. The protein contents of NOX2 and NOX4 were significantly higher in arterial tissue of young compared to adult animals. Moreover, VAS2870 (10 µM) had no effect on methoxamine-induced contractile responses of adult arteries but decreased them significantly in young arteries; such effect of VAS2870 persisted after removal of the endothelium. Finally, NOX2 inhibitor GSK2795039 (10 µM), but not NOX1/4 inhibitor GKT137831 (10 µM) weakened methoxamine-induced contractile responses of arteries from young rats. Thus, ROS produced by NOX2 have a pronounced contractile influence in saphenous artery smooth muscle cells of young, but not adult rats, which is associated with the increased vascular content of NOX2 protein at this age.


Subject(s)
Arteries , NADPH Oxidases , Rats , Male , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , NADP , Methoxamine , Arteries/physiology , NADPH Oxidase 1/genetics , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Superoxides/metabolism
18.
Free Radic Biol Med ; 216: 33-45, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479632

ABSTRACT

NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Zymosan/pharmacology , Granulocytes , NADPH Oxidases/genetics , Protein Isoforms , Ionophores/pharmacology , Phospholipases A2 , Obesity/complications , Reactive Oxygen Species/pharmacology
19.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542437

ABSTRACT

NADPH oxidase enzymes (NOX) are involved in all stages of carcinogenesis, but their expression levels and prognostic value in breast cancer (BC) remain unclear. Thus, we aimed to assess the expression and prognostic value of NOX enzymes in BC samples using online databases. For this, mRNA expression from 290 normal breast tissue samples and 1904 BC samples obtained from studies on cBioPortal, Kaplan-Meier Plotter, and The Human Protein Atlas were analyzed. We found higher levels of NOX2, NOX4, and Dual oxidase 1 (DUOX1) in normal breast tissue. NOX1, NOX2, and NOX4 exhibited higher expression in BC, except for the basal subtype, where NOX4 expression was lower. DUOX1 mRNA levels were lower in all BC subtypes. NOX2, NOX4, and NOX5 mRNA levels increased with tumor progression stages, while NOX1 and DUOX1 expression decreased in more advanced stages. Moreover, patients with low expression of NOX1, NOX4, and DUOX1 had lower survival rates than those with high expression of these enzymes. In conclusion, our data suggest an overexpression of NOX enzymes in breast cancer, with certain isoforms showing a positive correlation with tumor progression.


Subject(s)
Breast Neoplasms , NADPH Oxidases , Humans , Female , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Dual Oxidases/genetics , Breast Neoplasms/genetics , Prognosis , Reactive Oxygen Species/metabolism , RNA, Messenger/genetics , Gene Expression , NADPH Oxidase 4/genetics , NADPH Oxidase 1/genetics
20.
Redox Biol ; 71: 103126, 2024 May.
Article in English | MEDLINE | ID: mdl-38503217

ABSTRACT

Hydrogen peroxide (H2O2) functions as a signaling molecule in diverse cellular processes. While cells have evolved the capability to detect and manage changes in H2O2 levels, the mechanisms regulating key H2O2-producing enzymes to maintain optimal levels, especially in pancreatic beta cells with notably weak antioxidative defense, remain unclear. We found that the protein EI24 responds to changes in H2O2 concentration and regulates the production of H2O2 by controlling the translation of NOX4, an enzyme that is constitutively active, achieved by recruiting an RNA-binding protein, RTRAF, to the 3'-UTR of Nox4. Depleting EI24 results in RTRAF relocating into the nucleus, releasing the brake on NOX4 translation. The excessive production of H2O2 by liberated NOX4 further suppresses the translation of the key transcription factor MafA, ultimately preventing its binding to the Ins2 gene promoter and subsequent transcription of insulin. Treatment with a specific NOX4 inhibitor or the antioxidant NAC reversed these effects and alleviated the diabetic symptoms in beta-cell specific Ei24-KO mice. This study revealed a new mechanism through which cells regulate oxidative stress at the translational level, involving an ER-tethered RNA-binding protein that controls the expression of the key H2O2-producing enzyme NOX4.


Subject(s)
Hydrogen Peroxide , NADPH Oxidases , Mice , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Hydrogen Peroxide/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidative Stress , Signal Transduction , Antioxidants/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...