Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
Biochem Biophys Res Commun ; 721: 150126, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38776832

ABSTRACT

Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Sodium Channel Blockers , Humans , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , Animals , Rats , NAV1.9 Voltage-Gated Sodium Channel/metabolism , NAV1.9 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Sodium Channel Blockers/pharmacology , HEK293 Cells , Voltage-Gated Sodium Channel Blockers/pharmacology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Ganglia, Spinal/cytology
2.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718567

ABSTRACT

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Pulpitis , Animals , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mice , Male , Pulpitis/metabolism , Pulpitis/pathology , Trigeminal Ganglion/metabolism , Neurons/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Disease Models, Animal , Intercellular Signaling Peptides and Proteins
4.
Elife ; 122024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687187

ABSTRACT

Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.


Subject(s)
Analgesics , Benzenesulfonamides , Nociceptors , Phenyl Ethers , Animals , Analgesics/pharmacology , Nociceptors/metabolism , Nociceptors/drug effects , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mice , Action Potentials/drug effects , Pain/drug therapy , Humans , Sodium Channels/metabolism , Sodium Channels/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics
5.
J Med Case Rep ; 18(1): 215, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649973

ABSTRACT

BACKGROUND: Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy (DEE) characterized by drug resistance, intractable seizures, and developmental comorbidities. This article focuses on manifestations in two Indonesian children with Javanese ethnicity who experienced Dravet syndrome with an SCN1A gene mutation, presenting genetic analysis findings using next-generation sequencing. CASE PRESENTATION: We present a case series involving two Indonesian children with Javanese ethnicity whom had their first febrile seizure at the age of 3 months, triggered after immunization. Both patients had global developmental delay and intractable seizures. We observed distinct genetic findings in both our cases. The first patient revealed heterozygous deletion mutation in three genes (TTC21B, SCN1A, and SCN9A). In our second patient, previously unreported mutation was discovered at canonical splice site upstream of exon 24 of the SCN1A gene. Our patient's outcomes improved after therapeutic evaluation based on mutation findings When comparing clinical manifestations in our first and second patients, we found that the more severe the genetic mutation discovered, the more severe the patient's clinical manifestations. CONCLUSION: These findings emphasize the importance of comprehensive genetic testing beyond SCN1A, providing valuable insights for personalized management and tailored therapeutic interventions in patients with Dravet syndrome. Our study underscores the potential of next-generation sequencing in advancing genotype-phenotype correlations and enhancing diagnostic precision for effective disease management.


Subject(s)
Epilepsies, Myoclonic , NAV1.1 Voltage-Gated Sodium Channel , Humans , Epilepsies, Myoclonic/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Male , Female , Infant , NAV1.7 Voltage-Gated Sodium Channel/genetics , Indonesia , Anticonvulsants/therapeutic use , Mutation , Genetic Testing , High-Throughput Nucleotide Sequencing , Child, Preschool
7.
Neuropharmacology ; 253: 109967, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657946

ABSTRACT

Botulinum neurotoxin type A BoNT/A is used off-label as a third line therapy for neuropathic pain. However, the mechanism of action remains unclear. In recent years, the role of voltage-gated sodium channels (Nav) in neuropathic pain became evident and it was suggested that block of sodium channels by BoNT/A would contribute to its analgesic effect. We assessed sodium channel function in the presence of BoNT/A in heterologously expressed Nav1.7, Nav1.3, and the neuronal cell line ND7/23 by high throughput automated and manual patch-clamp. We used both the full protein and the isolated catalytic light chain LC/A for acute or long-term extracellular or intracellular exposure. To assess the toxin's effect in a human cellular system, we differentiated induced pluripotent stem cells (iPSC) into sensory neurons from a healthy control and a patient suffering from a hereditary neuropathic pain syndrome (inherited erythromelalgia) carrying the Nav1.7/p.Q875E-mutation and carried out multielectrode-array measurements. Both BoNT/A and the isolated catalytic light chain LC/A showed limited effects in heterologous expression systems and the neuronal cell line ND7/23. Spontaneous activity in iPSC derived sensory neurons remained unaltered upon BoNT/A exposure both in neurons from the healthy control and the mutation carrying patient. BoNT/A may not specifically be beneficial in pain syndromes linked to sodium channel variants. The favorable effects of BoNT/A in neuropathic pain are likely based on mechanisms other than sodium channel blockage and new approaches to understand BoNT/A's therapeutic effects are necessary.


Subject(s)
Botulinum Toxins, Type A , Induced Pluripotent Stem Cells , NAV1.7 Voltage-Gated Sodium Channel , Neuralgia , Humans , Neuralgia/drug therapy , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/therapeutic use , Induced Pluripotent Stem Cells/drug effects , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Analgesics/pharmacology , Animals , NAV1.3 Voltage-Gated Sodium Channel/genetics , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , HEK293 Cells , Cell Line
8.
Pflugers Arch ; 476(6): 975-992, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38538988

ABSTRACT

Human-induced pluripotent stem cells (iPS cells) are efficiently differentiated into sensory neurons. These cells express the voltage-gated sodium channel NaV1.7, which is a validated pain target. NaV1.7 deficiency leads to pain insensitivity, whereas NaV1.7 gain-of-function mutants are associated with chronic pain. During differentiation, the sensory neurons start spontaneous action potential firing around day 22, with increasing firing rate until day 40. Here, we used CRISPR/Cas9 genome editing to generate a HA-tag NaV1.7 to follow its expression during differentiation. We used two protocols to generate sensory neurons: the classical small molecule approach and a directed differentiation methodology and assessed surface NaV1.7 expression by Airyscan high-resolution microscopy. Our results show that maturation of at least 49 days is necessary to observe robust NaV1.7 surface expression in both protocols. Electric activity of the sensory neurons precedes NaV1.7 surface expression. A clinically effective NaV1.7 blocker is still missing, and we expect this iPS cell model system to be useful for drug discovery and disease modeling.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , NAV1.7 Voltage-Gated Sodium Channel , Sensory Receptor Cells , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Action Potentials , CRISPR-Cas Systems
9.
PLoS One ; 19(2): e0297367, 2024.
Article in English | MEDLINE | ID: mdl-38394191

ABSTRACT

Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Molecular Dynamics Simulation , Mutation , Algorithms , NAV1.7 Voltage-Gated Sodium Channel/genetics
10.
Acta Neurochir (Wien) ; 166(1): 73, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329587

ABSTRACT

BACKGROUND: Chronic low back pain (CLBP) is a complex condition in which genetic factors play a role in its susceptibility. Catechol-O-methyltransferase (COMT) and sodium channel NaV1.7 (SCN9A) genes are implicated in pain perception. The aim is to analyze the association of COMT and SCN9A with CLBP and their interaction, in a Mexican-Mestizo population. METHODS: A case-control study was conducted. Cases corresponded to adults of both sexes with CLBP. Controls were adults with no CLBP. Variants of SCN9A and COMT were genotyped. Allelic and genotypic frequencies and Hardy-Weinberg equilibrium (HWE) were calculated. Association was tested under codominant, dominant, and recessive models. Multifactor dimensionality reduction was developed to detect epistasis. RESULTS: Gene variants were in HWE, and there was no association under different inheritance models in the whole sample. In women, in codominant and dominant models, a trend to a high risk was observed for AA of rs4680 of COMT (OR = 1.7 [0.5-5.3] and 1.6 [0.7-3.4]) and for TT of rs4633 (OR = 1.6 [0.7-3.7] and 1.6 [0.7-3.4]). In men, a trend to low risk was observed for AG genotype of rs4680 in the same models (OR = 0.6 [0.2-1.7] and 0.7 [0.3-1.7]), and for TC genotype of rs4633 in the codominant model (OR = 0.6 [0.2-1.7]). In the interaction analysis, a model of the SCN9A and COMT variants showed a CVC of 10/10; however, the TA was 0.4141. CONCLUSION: COMT and SCN9A variants are not associated with CLBP in the analyzed Mexican-Mestizo population.


Subject(s)
Catechol O-Methyltransferase , Low Back Pain , NAV1.7 Voltage-Gated Sodium Channel , Adult , Female , Humans , Male , Case-Control Studies , Catechol O-Methyltransferase/genetics , Low Back Pain/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics
11.
Nature ; 625(7995): 557-565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172636

ABSTRACT

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Subject(s)
Chondrocytes , NAV1.7 Voltage-Gated Sodium Channel , Osteoarthritis , Voltage-Gated Sodium Channel Blockers , Animals , Humans , Mice , Calcium/metabolism , Calcium Signaling/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Disease Progression , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , NAV1.7 Voltage-Gated Sodium Channel/deficiency , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Osteoarthritis/complications , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Pain/complications , Pain/drug therapy , Pain/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use
12.
EMBO J ; 43(2): 196-224, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177502

ABSTRACT

Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , Aggression , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Transcriptome , Ion Transport/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , NAV1.7 Voltage-Gated Sodium Channel/genetics
13.
Pediatr Dermatol ; 41(1): 80-83, 2024.
Article in English | MEDLINE | ID: mdl-37345838

ABSTRACT

Congenital insensitivity to pain (CIP) is a rare phenotype characterized by the inability to perceive pain stimuli with subsequent self-injuries, whereas CIP associated with anhidrosis (CIPA) is an overlapping phenotype mainly characterized by insensitivity to noxious stimuli and anhidrosis. CIP is primarily associated with pathogenetic variants in the SCN9A gene while CIPA is associated with pathogenetic variants in NGF and NRTK genes. However, in recent years, a significant overlap between these two disorders has been observed highlighting the presence of anhidrosis in SCN9A variants. We report the cases of two siblings (age 4 and 6 years) born from consanguineous parents presenting with a previously undescribed phenotype due to a novel pathogenic variant in SCN9A clinically characterized by congenital insensitivity to pain, anhidrosis, and mild cognitive impairment.


Subject(s)
Channelopathies , Cognitive Dysfunction , Hereditary Sensory and Autonomic Neuropathies , Hypohidrosis , Indoles , Pain Insensitivity, Congenital , Propionates , Humans , Child, Preschool , Child , Pain Insensitivity, Congenital/genetics , Hypohidrosis/genetics , Mutation , Receptor, trkA/genetics , Pain/genetics , Cognitive Dysfunction/genetics , Hereditary Sensory and Autonomic Neuropathies/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics
14.
Clin Auton Res ; 34(1): 191-201, 2024 02.
Article in English | MEDLINE | ID: mdl-38064009

ABSTRACT

PURPOSE: Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS: We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS: Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION: Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.


Subject(s)
Autonomic Nervous System Diseases , Guanfacine , Humans , Guanfacine/therapeutic use , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mutation , Anxiety/drug therapy , Anxiety/genetics , Adrenergic alpha-Agonists
15.
Pain ; 165(4): 908-921, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37851391

ABSTRACT

ABSTRACT: Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.


Subject(s)
Voltage-Gated Sodium Channels , Humans , Voltage-Gated Sodium Channels/metabolism , Pain/drug therapy , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism
16.
J Pain ; 25(3): 730-741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37921732

ABSTRACT

The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.


Subject(s)
Neuralgia , Small Fiber Neuropathy , Humans , Small Fiber Neuropathy/diagnosis , Neuralgia/diagnostic imaging , Neuralgia/genetics , Neuralgia/complications , Magnetic Resonance Imaging , Gyrus Cinguli , NAV1.7 Voltage-Gated Sodium Channel/genetics
17.
Hum Mol Genet ; 33(2): 103-109, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-37721535

ABSTRACT

Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.


Subject(s)
Erythromelalgia , Humans , Erythromelalgia/genetics , Mutation, Missense/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain/genetics , Mutation , Exons/genetics
18.
Hum Cell ; 37(2): 502-510, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38110787

ABSTRACT

The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.


Subject(s)
Epilepsies, Myoclonic , Induced Pluripotent Stem Cells , Humans , Saudi Arabia , Mutation/genetics , Epilepsies, Myoclonic/genetics , Heterozygote , NAV1.7 Voltage-Gated Sodium Channel/genetics
19.
J Gen Physiol ; 155(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37903281

ABSTRACT

Voltage-gated sodium channels in peripheral nerves conduct nociceptive signals from nerve endings to the spinal cord. Mutations in voltage-gated sodium channel NaV1.7 are responsible for a number of severe inherited pain syndromes, including inherited erythromelalgia (IEM). Here, we describe the negative shifts in the voltage dependence of activation in the bacterial sodium channel NaVAb as a result of the incorporation of four different IEM mutations in the voltage sensor, which recapitulate the gain-of-function effects observed with these mutations in human NaV1.7. Crystal structures of NaVAb with these IEM mutations revealed that a mutation in the S1 segment of the voltage sensor facilitated the outward movement of S4 gating charges by widening the pathway for gating charge translocation. In contrast, mutations in the S4 segments modified hydrophobic interactions with surrounding amino acid side chains or membrane phospholipids that would enhance the outward movement of the gating charges. These results provide key structural insights into the mechanisms by which these IEM mutations in the voltage sensors can facilitate outward movements of the gating charges in the S4 segment and cause hyperexcitability and severe pain in IEM. Our work gives new insights into IEM pathogenesis at the near-atomic level and provides a molecular model for mutation-specific therapy of this debilitating disease.


Subject(s)
Erythromelalgia , NAV1.7 Voltage-Gated Sodium Channel , Humans , Erythromelalgia/genetics , Erythromelalgia/metabolism , Erythromelalgia/pathology , Models, Molecular , Mutation , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/genetics , Pain/metabolism , Pain/pathology
20.
Commun Biol ; 6(1): 958, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816865

ABSTRACT

The Nav1.7 voltage-gated sodium channel plays a key role in nociception. Three functional variants in the SCN9A gene (encoding M932L, V991L, and D1908G in Nav1.7), have recently been identified as stemming from Neanderthal introgression and to associate with pain symptomatology in UK BioBank data. In 1000 genomes data, these variants are absent in Europeans but common in Latin Americans. Analysing high-density genotype data from 7594 Latin Americans, we characterized Neanderthal introgression in SCN9A. We find that tracts of introgression occur on a Native American genomic background, have an average length of ~123 kb and overlap the M932L, V991L, and D1908G coding positions. Furthermore, we measured experimentally six pain thresholds in 1623 healthy Colombians. We found that Neanderthal ancestry in SCN9A is significantly associated with a lower mechanical pain threshold after sensitization with mustard oil and evidence of additivity of effects across Nav1.7 variants. Our findings support the reported association of Neanderthal Nav1.7 variants with clinical pain, define a specific sensory modality affected by archaic introgression in SCN9A and are consistent with independent effects of the Neanderthal variants on Nav1.7 function.


Subject(s)
Neanderthals , Pain Threshold , Humans , Animals , Neanderthals/genetics , Pain/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Nociception
SELECTION OF CITATIONS
SEARCH DETAIL
...