Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.456
Filter
1.
Cell Mol Biol Lett ; 29(1): 66, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724931

ABSTRACT

The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and ß-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular ß-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/metabolism , Humans , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Gene Editing/methods , beta Catenin/metabolism , beta Catenin/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Fish Shellfish Immunol ; 149: 109604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710343

ABSTRACT

MicroRNAs (miRNAs) are a crucial type of non-coding RNAs involved in post-transcriptional regulation. The playing essential regulatory roles in the NF-κB signaling pathway and modulate the host immune response to diverse pathogens by targeting IκBα. However, the regulatory mechanism of miRNAs in relation with IκBα in Sebastes schlegelii remains unclear. In our study, we identified two copies of IkBα gene in black rockfish (Sebastes schlegelii), namely IkBα1 and IkBα2. Moreover, we have discovered that miRNA-530 can activate the NF-κB signaling pathway by inhibiting the expression of IκBα, thereby inducing the inflammatory response. This project comprehensively investigated the interactive regulatory roles of miRNA-530 in the NF-κB signaling pathway at both cellular and in vivo levels, while also elucidating the regulatory relationships between miRNA-530 and IκBα. In conclusion, our research confirmed that miRNA-530 can target the 3'UTR region of IκBα, resulting in a decrease in the expression of IκBα at the post-transcriptional level and inhibiting its translation. The findings contribute to the understanding of the regulatory network of non-coding RNA in teleosts and its subsequent regulation of the NF-κB signaling pathway by miRNAs.


Subject(s)
Gene Expression Regulation , MicroRNAs , NF-KappaB Inhibitor alpha , NF-kappa B , Signal Transduction , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , Gene Expression Regulation/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics , Fishes/genetics , Fishes/immunology , Perciformes/genetics , Perciformes/immunology
3.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
4.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747296

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Subject(s)
Desmoglein 2 , Macrophages , Receptors, CCR2 , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Desmoglein 2/genetics , Desmoglein 2/metabolism , Desmoglein 2/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/immunology , Cardiomyopathies/metabolism
5.
Free Radic Biol Med ; 220: 249-261, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697491

ABSTRACT

Carbon black nanoparticles (CBNPs) are widely distributed in the environment and are increasingly recognized as a contributor in the development of cardiovascular disease. A variety of cardiac injuries and diseases result from structural and functional damage to cardiomyocytes. This study explored the mechanisms of CBNPs-mediated myocardial toxicity. CBNPs were given to mice through intra-tracheal instillation and it was demonstrated that the particles can be taken up into the cardiac tissue. Exposure to CBNPs induced cardiomyocyte inflammation and apoptosis. In combination with in vitro experiments, we showed that CBNPs increased the ROS and induced mitochondria fragmentation. Functionally, CBNPs-exposed cardiomyocyte exhibited depolarization of the mitochondrial membrane potential, release of cytochrome c, and activation of pro-apoptotic BAX, thereby initiating programmed cell death. On the other hand, CBNPs impaired autophagy, leading to the inadequate removal of dysfunctional mitochondria. The excess accumulation of damaged mitochondria further stimulated NF-κB activation and triggered the NLRP3 inflammasome pathway. Both the antioxidant N-acetylcysteine and the autophagy activator rapamycin were effective to attenuate the damage of CBNPs on cardiomyocytes. Taken together, this study elucidated the potential mechanism underlying CBNPs-induced myocardial injury and provided a scientific reference for the evaluation and prevention of the CBNPs-related heart risk.


Subject(s)
Apoptosis , Autophagy , Membrane Potential, Mitochondrial , Mitochondrial Dynamics , Myocytes, Cardiac , Nanoparticles , Reactive Oxygen Species , Soot , Animals , Soot/toxicity , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Autophagy/drug effects , Mice , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Dynamics/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Acetylcysteine/pharmacology , Male , Sirolimus/pharmacology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Oxidative Stress/drug effects
6.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764116

ABSTRACT

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Myeloid Differentiation Factor 88 , NF-kappa B , Rats, Sprague-Dawley , Rhinitis, Allergic , Signal Transduction , Toll-Like Receptor 4 , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Rats , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Male , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Female , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism
7.
CNS Neurosci Ther ; 30(5): e14683, 2024 05.
Article in English | MEDLINE | ID: mdl-38738952

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) and atherosclerosis (AS) are widespread diseases predominantly observed in the elderly population. Despite their prevalence, the underlying molecular interconnections between these two conditions are not well understood. METHODS: Utilizing meta-analysis, bioinformatics methodologies, and the GEO database, we systematically analyzed transcriptome data to pinpoint key genes concurrently differentially expressed in AD and AS. Our experimental validations in mouse models highlighted the prominence of two genes, NKRF (NF-κB-repressing factor) and ZBTB17 (MYC-interacting zinc-finger protein 1). RESULTS: These genes appear to influence the progression of both AD and AS by modulating the NF-κB signaling pathway, as confirmed through subsequent in vitro and in vivo studies. CONCLUSIONS: This research uncovers a novel shared molecular pathway between AD and AS, underscoring the significant roles of NKRF and ZBTB17 in the pathogenesis of these disorders.


Subject(s)
Alzheimer Disease , Atherosclerosis , NF-kappa B , Signal Transduction , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Animals , Signal Transduction/genetics , Signal Transduction/physiology , NF-kappa B/metabolism , NF-kappa B/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Mice , Transcriptome , Gene Expression Profiling , Repressor Proteins/genetics , Repressor Proteins/metabolism , Mice, Transgenic
8.
Genes Genomics ; 46(6): 689-699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691326

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is the second most commonly seen cancer in the US, and patients with OC are commonly diagnosed in the advanced stage. Research into the molecular mechanisms and potential therapeutic targets of OC is becoming increasingly urgent. In our study, we worked to discover the role of TRIM44 in OC development. OBJECTIVE: This study explored whether the overexpression of TRIM44 mediates the NF-kB pathway to promote the progression of OC. METHODS: A TRIM44 overexpression model was constructed in SKOV3 cells, and the proliferation ability of the cells was detected using the CCK-8 assay. The migration healing ability of cells was detected using cell scratch assay. Cell migration and invasion were detected using Transwell nesting. TUNEL was applied to detect apoptosis, and ELISA and western blot were used to detect the expression of NF-κB signaling pathway proteins. The pathological changes of the tumor tissues were observed using HE staining in a mouse ovarian cancer xenograft model. Immunofluorescence double staining, RT-PCR, and western blot were used to determine the expression of relevant factors in tumour tissues. RESULTS: TRIM44 overexpression promoted the proliferation, migration, and invasion of SKOV3 cells in vitro and inhibited apoptosis while enhancing the growth of tumours in vivo. TRIM44 regulated the NF-κB signaling pathway. CONCLUSIONS: TRIM44 overexpression can regulate the NF-κB signaling pathway to promote the progression of OC, and TRIM44 may be a potential therapeutic target for OC.


Subject(s)
Cell Movement , Cell Proliferation , Intracellular Signaling Peptides and Proteins , NF-kappa B , Ovarian Neoplasms , Signal Transduction , Tripartite Motif Proteins , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , NF-kappa B/metabolism , NF-kappa B/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Animals , Mice , Cell Line, Tumor , Signal Transduction/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Apoptosis/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Disease Progression
9.
Bull Exp Biol Med ; 176(5): 680-686, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733478

ABSTRACT

Morphological, molecular, and biological features of the systemic inflammatory response induced by LPS administration were assessed in adult and old male Wistar rats with high and low resistance to hypoxia. In 6 h after LPS administration, mRNA expression levels of Hif1a, Vegf, Nfkb, and level of IL-1ß protein in old rats were higher than in adult rats regardless of hypoxia tolerance. The morphometric study showed that the number of neutrophils in the interalveolar septa of the lungs was significantly higher in low-resistant adult and old rats 6 h after LPS administration. Thus, in old male Wistar rats, systemic inflammatory response is more pronounced than in adult rats and depends on the initial tolerance to hypoxia, which should be considered when developing new approaches to the therapy of systemic inflammatory response in individuals of different ages.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Interleukin-1beta , Rats, Wistar , Animals , Male , Rats , Hypoxia/metabolism , Hypoxia/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lipopolysaccharides/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Lung/pathology , Lung/metabolism , Lung/drug effects , Lung/immunology , Neutrophils/metabolism , Neutrophils/immunology , Inflammation/metabolism , Inflammation/pathology , Age Factors , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Food Funct ; 15(11): 5942-5954, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738974

ABSTRACT

Our laboratory previously extracted bound polyphenols (BPP) in insoluble dietary fiber from navel orange peel (NOP-IDF), and the aim of this study was to investigate the anti-inflammatory activity and potential molecular mechanisms of BPP by establishing an LPS-induced intestinal-like Caco-2/RAW264.7 co-culture inflammation model. The results demonstrated that BPP reduced the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the production of pro-inflammatory cytokines, nitric oxide (NO), and reactive oxidative species (ROS) during the inflammatory damage process. Furthermore, BPP alleviated the lipopolysaccharides (LPS)-induced intestinal barrier damage by attenuating the decrease in trans-epithelial electrical resistance (TEER), diamine oxidase (DAO) activity, and intestinal alkaline phosphatase (IAP) activity, as well as the downregulation of ZO-1, Occludin, and Claudin-1 protein expression levels. RNA-seq results on RAW264.7 cells in the co-culture model showed that the NF-κB and JAK-STAT pathways belonged to the most significantly affected signaling pathways in the KEGG analysis, and western blot confirmed that they are essential for the role of BPP in intestinal inflammation. Additionally, overexpression of the granulocyte-macrophage colony-stimulating factor (CSF2) gene triggered abnormal activation of the NF-κB and JAK-STAT pathways and high-level expression of inflammatory factors, while BPP effectively improved this phenomenon. The above results suggested that BPP could inhibit intestinal inflammatory injury and protect intestinal barrier integrity through CSF2-mediated NF-κB and JAK-STAT pathways.


Subject(s)
Citrus sinensis , Coculture Techniques , Dietary Fiber , Lipopolysaccharides , NF-kappa B , Polyphenols , STAT Transcription Factors , Signal Transduction , Mice , NF-kappa B/metabolism , NF-kappa B/genetics , Animals , Humans , Polyphenols/pharmacology , Citrus sinensis/chemistry , Caco-2 Cells , Lipopolysaccharides/adverse effects , RAW 264.7 Cells , Dietary Fiber/pharmacology , Signal Transduction/drug effects , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Inflammation/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Fruit/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects
11.
Sci Signal ; 17(836): eadd5073, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743809

ABSTRACT

The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.


Subject(s)
MAP Kinase Signaling System , NF-kappa B , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , MAP Kinase Signaling System/drug effects , Animals , Cell Line, Tumor , Mutation , Mice , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/drug therapy , Melanoma/pathology , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude
12.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2262-2272, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812240

ABSTRACT

To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.


Subject(s)
Capsules , Cognitive Dysfunction , Drugs, Chinese Herbal , Epimedium , Flavones , Rats, Sprague-Dawley , Stroke , Animals , Rats , Epimedium/chemistry , Male , Flavones/administration & dosage , Flavones/pharmacology , Flavones/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Stroke/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Humans , Amyloid beta-Peptides/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Cognition/drug effects
13.
J Agric Food Chem ; 72(21): 12119-12129, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38761152

ABSTRACT

Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.


Subject(s)
Colitis , Intestinal Mucosa , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B , Signal Transduction , Taurine , Toll-Like Receptor 4 , Animals , Taurine/pharmacology , Taurine/administration & dosage , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Mice , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction/drug effects , Colitis/drug therapy , Colitis/metabolism , Colitis/chemically induced , Colitis/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Caco-2 Cells , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Dextran Sulfate/adverse effects , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Intestinal Barrier Function
14.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714690

ABSTRACT

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Subject(s)
Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
15.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812159

ABSTRACT

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Cyclooxygenase 2 , Liver , NF-kappa B , Panax , Saponins , Signal Transduction , Animals , Acetaminophen/adverse effects , Acetaminophen/toxicity , Mice , Panax/chemistry , Male , Saponins/pharmacology , Saponins/administration & dosage , NF-kappa B/genetics , NF-kappa B/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Liver/drug effects , Liver/metabolism , Signal Transduction/drug effects , Humans , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology
16.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564364

ABSTRACT

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-18 , Macrophage Activation , Signal Transduction , Liver/metabolism , Ascorbic Acid , Sepsis/complications , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
17.
J Med Virol ; 96(4): e29570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558098

ABSTRACT

Previous research results of our group showed that Toll-like receptor 4 (TLR4) and nucleolin synergistically mediate respiratory syncytial virus (RSV) infection in human central neuron cells, but the specific mechanism remains unclear. Here we designed and synthesized lentiviruses with TIR (674-815 aa), TLR4 (del 674-815 aa), GAR (645-707 aa), and NCL (del 645-707 aa) domains, and obtained stable overexpression cell lines by drug screening, and subsequently infected RSV at different time points. Laser confocal microscopy and coimmunoprecipitation were used for the observation of co-localization and interaction of TIR/GAR domains. Western blot analysis was used for the detection of p-NF-κB and LC3 protein expression. Real-time PCR was used for the detection of TLR4/NCL mRNA expression. ELISA assay was used to measure IL-6, IL-1ß, and TNF-α concentrations and flow cytometric analysis was used for the study of apoptosis. Our results suggest that overexpression of TIR and GAR domains can exacerbate apoptosis and autophagy, and that TIR and GAR domains can synergistically mediate RSV infection and activate the NF-κB signaling pathway, which regulates the secretion of downstream inflammatory factors, such as IL-6, IL-1ß, and TNF-α, and ultimately leads to neuronal inflammatory injury.


Subject(s)
Neuroblastoma , Respiratory Syncytial Virus Infections , Humans , Interleukin-6/metabolism , Neurons/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nucleolin , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Signal Transduct Target Ther ; 9(1): 91, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627387

ABSTRACT

Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.


Subject(s)
NF-kappa B , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Down-Regulation/genetics , Liver Cirrhosis/metabolism , Macrophages/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Chemokine , S100 Calcium-Binding Protein A4
19.
Food Funct ; 15(8): 4079-4094, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563230

ABSTRACT

Gastritis is a common disease characterized by gastric ulcers and severe bleeding. Excessive daily alcohol consumption can cause acute gastritis, impacting individuals' quality of life. This study aims to explore the protective effects of different ethanol-fractional polysaccharides of Dendrobium officinale (EPDO) on acute alcohol-induced gastric injury in vivo. Results showed that EPDO-80, identified as a ß-glucan, exhibited significant anti-inflammatory properties in pathology. It could reduce the area of gastric mucosal injury and cell infiltration. EPDO-80 had a dose-effect relationship in reducing the levels of malondialdehyde and cyclooxygenase-2 and decreasing the levels of inflammation mediators such as tumor necrosis factor α. More extensively, EPDO-80 could inhibit the activation of the TNFR/IκB/NF-κB signaling pathway, reducing the production of TNF-α mRNA and cell apoptosis in organs. Conversely, EPDO-80 could promote changes in the gut microbiota structure. These findings suggest that EPDO-80 could have great potential in limiting oxidative stress and inflammation mediated by inhibiting the NF-κB signaling pathway, which is highly related to its ß-glucan structure and functions in gut microbiota.


Subject(s)
Dendrobium , Ethanol , Gastritis , NF-kappa B , Polysaccharides , Dendrobium/chemistry , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gastritis/chemically induced , Gastritis/drug therapy , Male , Mice , NF-kappa B/metabolism , NF-kappa B/genetics , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Plant Extracts/pharmacology , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Protective Agents/pharmacology
20.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1455-1466, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621929

ABSTRACT

Ulcerative colitis is a chronic, recurrent, and nonspecific intestinal inflammatory disease, which is difficult to cure and has the risk of deterioration into related tumors. Long-term chronic inflammatory stimulation can increase the risk of cancerization. With the signaling pathway as a key link in the regulation of tumor microenvironments, nuclear factor-kappa B(NF-κB) is an important regulator of intestinal inflammation. It can also be co-regulated as downstream factors of other signaling pathways, such as TLR4, MAPK, STAT, PI3K, and so on. At present, a large number of animal experiments have proved that traditional Chinese medicine(TCM) can reduce inflammation by interfering with NF-κB-related signaling pathways, improve intestinal inflammation, and inhibit the progression of inflammation to tumors. This article reviewed the relationship between NF-κB-related signaling pathways and the intervention mechanism of TCM, so as to provide a reference for the clinical treatment of ulcerative colitis and the optimization of related cancer prevention strategies.


Subject(s)
Colitis, Ulcerative , Colorectal Neoplasms , Animals , Colitis, Ulcerative/complications , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Disease Models, Animal , Inflammation , Medicine, Chinese Traditional , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...