Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
2.
Sci Signal ; 16(806): eabn5410, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816088

ABSTRACT

The ubiquitination-dependent processing of NF-κB2 (also known as p100) is a critical step in the activation of the noncanonical NF-κB pathway. We investigated the molecular mechanisms regulating this process and showed that TRIM55 was the E3 ubiquitin ligase that mediated the ubiquitination of p100 and coordinated its processing. TRIM55 deficiency impaired noncanonical NF-κB activation and B cell function. Mice with a B cell-specific Trim55 deficiency exhibited reduced germinal center formation and antibody production. These mice showed less severe symptoms than those of control mice upon the induction of a systemic lupus-like disease, suggesting B cell-intrinsic functions of TRIM55 in humoral immune responses and autoimmunity. Mechanistically, the ubiquitination of p100 mediated by TRIM55 was crucial for p100 processing by VCP, an ATPase that mediates ubiquitin-dependent protein degradation by the proteasome. Furthermore, we found that TRIM55 facilitated the interaction between TRIM21 and VCP as well as TRIM21-mediated K63-ubiquitination of VCP, both of which were indispensable for the formation of the VCP-UFD1-NPL4 complex and p100 processing. Together, our results reveal a mechanism by which TRIM55 fine-tunes p100 processing and regulates B cell-dependent immune responses in vivo, highlighting TRIM55 as a potential therapeutic target for lupus-like disease.


Subject(s)
NF-kappa B , Signal Transduction , Animals , Mice , Immunity , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Ubiquitination
4.
Int J Pediatr Otorhinolaryngol ; 166: 111470, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36773447

ABSTRACT

OBJECTIVES: Sudden Sensorineural Hearing Loss (SSNHL) is an increasingly common health problem today. Although the direct mortality rate of this disorder is relatively low, its impact on quality of life is enormous; this is why accurate identification of pathogenesis and influencing factors in the disease process can play an essential role in preventing and treating the disease. Acute inflammation, which leads to chronic inflammation due to aberrant expression of inflammation-mediating genes, may play a significant role in the pathogenesis of the disease. The essential Nuclear factor kappa B (NF-kB) pathway genes, NFKB1 and NFKB2, serve as prothrombotic agents when expressed abnormally, compromising the cochlea by disrupting the endolymphatic potential and causing SSNHL. METHODS: This study investigates the expression levels of NFKB1 and NFKB2 in peripheral blood (PB) through a quantitative polymerase chain reaction in 50 Iranian patients with SSNHL, and 50 healthy volunteers were of the same age and sex as controls. RESULTS: As a result, NFKB2 expression levels in patients were higher than in controls, regardless of sex or age (posterior beta = 0.619, adjusted P-value = 0.016), and NFKB1 expression levels did not show significant differences between patients and controls. The expression levels of NFKB1 and NFKB2 had significantly strong positive correlations in both SSNHL patients and healthy individuals (r = 0.620, P = 0.001 and r = 0.657, P 0.001, respectively), suggesting the presence of an interconnected network. CONCLUSION: NFKB2 has been identified as a significant inflammatory factor in the pathophysiology of SSNHL disease. Inflammation can play an essential role in developing SSNHL, and our findings could be used as a guide for future research.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss, Sudden , Humans , Iran , Quality of Life , Case-Control Studies , Hearing Loss, Sudden/etiology , Hearing Loss, Sensorineural/genetics , Inflammation , Gene Expression , NF-kappa B p50 Subunit/genetics , NF-kappa B p52 Subunit/genetics
5.
Expert Rev Clin Immunol ; 19(3): 329-339, 2023 03.
Article in English | MEDLINE | ID: mdl-36706462

ABSTRACT

INTRODUCTION: Genetic defects affect the manner of the immune system's development, activation, and function. Nuclear factor-kappa B subunit 1 (NF-κB1) and NF-κB2 are involved in different biological processes, and deficiency in these transcription factors may reveal clinical and immunological difficulties. AREAS COVERED: This review article gathers the most frequent clinical and immunological remarkable characteristics of NF-κB1 and NF-κB2 deficiencies. Afterward, an effort is made to describe the biological mechanism, which is likely to be the cause of these clinical and immunological abnormalities. EXPERT OPINION: The present review article has explained the mechanism of contributions of the NF-κB1 and NF-κB2 deficiency in revealing immunodeficiency symptoms, specifically immunological and clinical manifestations. These mechanisms demonstrate the importance of NF-κB1 and NF-κB2 signaling pathways for B and T cell development, activation, antibody production, and immunotolerance. The manifestation of a mutation can range from no symptoms to severe complications in a family.


NF-κB1 and NF-κB2 are the transcription factors that have an essential role in the development and function of the immune system. Several mutations in the NF-κBs could lead to inborn errors of immune manifestations.There are different reports of NF-κB mutations with various clinical and immunological manifestations, whereas the mechanisms behind the appearance of these have been less discussed. We collected frequent clinical and immunological manifestations from the literature and discussed the likely biological cause of their occurrence. Here we clarify the potential mechanism that defects in NF-κB1 and NF-κB2 signaling lead to inadequate B and T cells function, specifically, insufficient switched memory B cells and class-switched antibodies and autoimmunity. We also focused on the straight correlation between deficiencies in immune system responses caused by defects in NF-κB and susceptibility to recurrent infections and other clinical problems.Since our understanding of the mechanisms of signaling pathways such as NF-κB deficiencies from genetic mutations to clinical manifestations in PIDs is limited, further in vitro and animal model studies are necessary to assess these pathways' comprehensive roles in immunodeficiency more accurately. [Figure: see text].


Subject(s)
Immunologic Deficiency Syndromes , NF-kappa B , Humans , NF-kappa B/metabolism , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Incidence , NF-kappa B p50 Subunit , Immunologic Deficiency Syndromes/epidemiology , Immunologic Deficiency Syndromes/genetics
6.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G306-G317, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35916405

ABSTRACT

The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.


Subject(s)
NF-kappa B p52 Subunit , Plasma Cells , Animals , Immunoglobulin A/metabolism , Immunoglobulins/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Plasma Cells/metabolism , Proteomics
7.
Mol Cancer ; 21(1): 66, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246156

ABSTRACT

BACKGROUND: Patients with relapsed/refractory acute myeloid leukaemia (AML) with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) have limited treatment options and poor prognosis. Therefore, novel treatment modalities are needed. Since high expression of natural killer group 2 member D ligands (NKG2DLs) can be induced by FLT3 inhibitors, we constructed dual-target FLT3 single-chain fragment variable (scFv)/NKG2D-chimeric antigen receptor (CAR) T cells, and explored whether FLT3 inhibitors combined with FLT3scFv/NKG2D-CAR T cells could have synergistic anti-leukaemia effects. METHODS: FLT3scFv and NKG2D expression in CAR T cells, FLT3 and NKG2DL expression in AML cells, and the in vitro cytotoxicity of combining CAR T cells with gilteritinib were assessed by flow cytometry. The therapeutic effect was evaluated in a xenograft mouse model established by injection of MOLM-13 cells. Mechanisms underlying the gilteritinib-induced NKG2DL upregulation were investigated using siRNA, ChIP-QPCR and luciferase assays. RESULTS: The FLT3scFv/NKG2D-CAR T cells specifically lysed AML cells both in vitro and in the xenograft mouse model. The efficacy of FLT3scFv/NKG2D-CAR T cells was improved by gilteritinib-pretreatment. The noncanonical NF-κB2/Rel B signalling pathway was found to mediate gilteritinib-induced NKG2DL upregulation in AML cells. CONCLUSIONS: Bispecific FLT3scFv/NKG2D-CAR T cells can effectively eradicate AML cells. The FLT3 inhibitor gilteritinib can synergistically improve this effect by upregulating NF-κB2-dependent NKG2DL expression in AML cells.


Subject(s)
Leukemia, Myeloid, Acute , NK Cell Lectin-Like Receptor Subfamily K , Aniline Compounds/pharmacology , Animals , Disease Models, Animal , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mutation , NF-kappa B p52 Subunit/genetics , NK Cell Lectin-Like Receptor Subfamily K/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazines , T-Lymphocytes/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/therapeutic use
8.
Pediatr Infect Dis J ; 41(2): 140-144, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34609106

ABSTRACT

INTRODUCTION: Although most cases of coccidioidomycosis are subclinical or self-limited respiratory disease, 1% lead to extrathoracic dissemination and become fatal, especially in patients with an associated immunodeficiency. Up to 30%-50% of patients with defects in cell-mediated immunity, those with AIDS and recipients of solid-organ transplants, may develop disseminated coccidioidomycosis (DC). Within the primary immunodeficiencies, an uncommon group is caused by C-terminal NFKB2 pathogenic variants. MATERIALS AND METHODS: We performed a literature search of core databases. Written informed consent for the study and for publication was obtained. CASE PRESENTATION: A 7-year-old Mexican girl, eldest of 3 sisters, no relevant family history, and a history of recurrent upper respiratory infections and alopecia totalis was admitted with DC involving pulmonary, soft tissue, skin, bone and joint compromise. The immunodeficiency assessment showed low IgM and NK cells. We found an NFKB2 de novo heterozygous nonsense mutation of c.2611C>T (p.Gln871*). She was treated with liposomal amphotericin B and itraconazole with surgical debridement. The clinical phenotype of this primary immunodeficiency is characterized by antibody deficiency and associated broncho-pulmonary predisposition to infection, but moreover also opportunistic infections and autoimmunity, most recognizable alopecia and adrenocorticotropic hormone-deficiency. After 1 year of her discharge, she continues under surveillance with antifungal therapy with itraconazole and replacement intravenous immunoglobulin until today. CONCLUSION: This is the first case report of DC in a patient with an NFKB2 pathogenic variant and it illustrates the importance of screening for primary immunodeficiencies in patients with disseminated fungal infections.


Subject(s)
Coccidioidomycosis , NF-kappa B p52 Subunit/genetics , Opportunistic Infections , Primary Immunodeficiency Diseases , Alopecia , Antifungal Agents/therapeutic use , Child , Coccidioidomycosis/complications , Coccidioidomycosis/diagnosis , Coccidioidomycosis/drug therapy , Coccidioidomycosis/pathology , Codon, Nonsense/genetics , Female , Humans , Opportunistic Infections/complications , Opportunistic Infections/diagnosis , Opportunistic Infections/drug therapy , Opportunistic Infections/pathology , Primary Immunodeficiency Diseases/complications , Scalp/pathology
9.
Mech Ageing Dev ; 197: 111511, 2021 07.
Article in English | MEDLINE | ID: mdl-34023356

ABSTRACT

Extracellular matrix degradation, reactive oxygen species (ROS) generation, and inflammation in nucleus pulposus (NP) cells contribute to the progression of intervertebral disc degeneration (IDD). NRGs (Neuregulins) play a vital role in the development of the nervous system. In the present study, we found that NRG1 was downregulated within degenerative intervertebral disc and NP tissues, according to both bioinformatics and experimental analyses. Within IL-1ß-stimulated NP cells, we observed degenerative and inflammatory changes, including inhibited cell viability, promoted cell apoptosis and ROS accumulation, reduced collagen II and aggrecan proteins, elevated MMP-3/13 and ADAMTS-4/5 proteins, and upregulated IL-6 and TNF-α mRNA levels. Within IL-1ß-stimulated NP cells, NRG1 expression was also downregulated. NRG1 overexpression attenuated, whereas NRG1 silencing aggravated IL-1ß-induced degenerative and inflammatory changes. Moreover, NRG1 regulated ErbB2/3 activation, contributing to the NRG1 protective function in NP cells. NFKB2 directly targeted the promoter region of NRG1 and inhibited NRG1 expression. In IL-1ß-stimulated NP cells, silencing NFKB2 attenuated, whereas silencing NRG1 aggravated the degenerative changes and inflammation; the effects of NFKB2 silencing were significantly reversed by NRG1 silencing. In conclusion, NRG1 expression is downregulated within degenerative NP tissue samples and IL-1ß-stimulated NP cells. NRG1 might protect against IL-1ß-induced degenerative changes and inflammation. The upregulated NFKB2 might be the reason of NRG1 downregulation in degenerative NP tissues.


Subject(s)
Intervertebral Disc Degeneration/metabolism , NF-kappa B p52 Subunit/metabolism , Neuregulin-1/metabolism , Nucleus Pulposus/metabolism , Transcription, Genetic , Cell Line , Female , Humans , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Male , NF-kappa B p52 Subunit/genetics , Neuregulin-1/genetics , Nucleus Pulposus/physiology
11.
J Allergy Clin Immunol ; 147(2): 532-544.e1, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33007327

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that emerged recently and has created a global pandemic. Symptomatic SARS-CoV-2 infection, termed coronavirus disease 2019 (COVID-19), has been associated with a host of symptoms affecting numerous organ systems, including the lungs, cardiovascular system, kidney, central nervous system, gastrointestinal tract, and skin, among others. OBJECTIVE: Although several risk factors have been identified as related to complications from and severity of COVID-19, much about the virus remains unknown. The host immune response appears to affect the outcome of disease. It is not surprising that patients with intrinsic or secondary immune compromise might be particularly susceptible to complications from SARS-CoV-2 infection. Pathogenic loss-of-function or gain-of-function heterozygous variants in nuclear factor-κB2 have been reported to be associated with either a combined immunodeficiency or common variable immunodeficiency phenotype. METHODS: We evaluated the functional consequence and immunologic phenotype of a novel NFKB2 loss of function variant in a 17-year-old male patient and describe the clinical management of SARS-CoV-2 infection in this context. RESULTS: This patient required a 2-week hospitalization for SARS-CoV-2 infection, including 7 days of mechanical ventilation. We used biologic therapies to avert potentially fatal acute respiratory distress syndrome and treat hyperinflammatory responses. The patient had an immunologic phenotype of B-cell dysregulation with decreased switched memory B cells. Despite the underlying immune dysfunction, he recovered from the infection with intense management. CONCLUSIONS: This clinical case exemplifies some of the practical challenges in management of patients with SARS-CoV-2 infection, especially in the context of underlying immune dysregulation.


Subject(s)
COVID-19/genetics , NF-kappa B p52 Subunit/genetics , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adolescent , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , B-Lymphocytes/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/therapy , Hospitalization , Humans , Interleukin-6/blood , Male , Respiration, Artificial , SARS-CoV-2/immunology , Severity of Illness Index
12.
J Exp Med ; 218(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33107914

ABSTRACT

NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.


Subject(s)
Autoimmunity/genetics , NF-kappa B p52 Subunit/genetics , Animals , Female , Humans , I-kappa B Proteins/genetics , Male , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , Receptors, Antigen, T-Cell/genetics
13.
Theranostics ; 10(25): 11428-11443, 2020.
Article in English | MEDLINE | ID: mdl-33052224

ABSTRACT

Background: Bromodomain and extra-terminal domain (BET) inhibitors have shown profound efficacy against hematologic malignancies and solid tumors in preclinical studies. However, the underlying molecular mechanism in melanoma is not well understood. Here we identified secreted phosphoprotein 1 (SPP1) as a melanoma driver and a crucial target of BET inhibitors in melanoma. Methods: Bioinformatics analysis and meta-analysis were used to evaluate the SPP1 expression in normal tissues, primary melanoma, and metastatic melanoma. Real-time PCR (RT-PCR) and Western blotting were employed to quantify SPP1 expression in melanoma cells and tissues. Cell proliferation, wound healing, and Transwell assays were carried out to evaluate the effects of SPP1 and BET inhibitors in melanoma cells in vitro. A xenograft mouse model was used to investigate the effect of SPP1 and BET inhibitors on melanoma in vivo. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the regulatory mechanism of BET inhibitors on SPP1. Results: SPP1 was identified as a melanoma driver by bioinformatics analysis, and meta-analysis determined it to be a diagnostic and prognostic biomarker for melanoma. SPP1 overexpression was associated with poor melanoma prognosis, and silencing SPP1 suppressed melanoma cell proliferation, migration, and invasion. Through a pilot drug screen, we identified BET inhibitors as ideal therapeutic agents that suppressed SPP1 expression. Also, SPP1 overexpression could partially reverse the suppressive effect of BET inhibitors on melanoma. We further demonstrated that bromodomain-containing 4 (BRD4) regulated SPP1 expression. Notably, BRD4 did not bind directly to the SPP1 promoter but regulated SPP1 expression through NFKB2. Silencing of NFKB2 resembled the phenotype of BET inhibitors treatment and SPP1 silencing in melanoma. Conclusion: Our findings highlight SPP1 as an essential target of BET inhibitors and provide a novel mechanism by which BET inhibitors suppress melanoma progression via the noncanonical NF-κB/SPP1 pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Melanoma/therapy , Osteopontin/genetics , Skin Neoplasms/therapy , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/genetics , Chemotherapy, Adjuvant/methods , Computational Biology , Datasets as Topic , Disease Progression , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Melanoma/genetics , Melanoma/mortality , Melanoma/secondary , Mice , Middle Aged , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/prevention & control , Osteopontin/antagonists & inhibitors , Osteopontin/metabolism , Prognosis , Promoter Regions, Genetic , RNA-Seq , Signal Transduction/drug effects , Signal Transduction/genetics , Skin/pathology , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Transcription Factors/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
14.
J Clin Immunol ; 40(8): 1093-1101, 2020 11.
Article in English | MEDLINE | ID: mdl-32813180

ABSTRACT

The noncanonical NF-κB pathway is implicated in diverse biological and immunological processes. Monoallelic C-terminus loss-of-function and gain-of-function mutations of NFKB2 have been recently identified as a cause of immunodeficiency manifesting with common variable immunodeficiency (CVID) or combined immunodeficiency (CID) phenotypes. Herein we report a family carrying a heterozygous nonsense mutation in NFKB2 (c.809G > A, p.W270*). This variant is associated with increased mRNA decay and no mutant NFKB2 protein expression, leading to NFKB2 haploinsufficiency. Our findings demonstrate that bona fide NFKB2 haploinsufficiency, likely caused by mutant mRNA decay and protein instability leading to the transcription and expression of only the wild-type allele, is associated with clinical immunodeficiency, although with incomplete clinical penetrance. Abnormal B cell development, hypogammaglobulinemia, poor antibody response, and abnormal noncanonical (but normal canonical) NF-κB pathway signaling are the immunologic hallmarks of this disease. This adds a third allelic variant to the pathophysiology of NFKB2-mediated immunodeficiency disorders.


Subject(s)
Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Haploinsufficiency , Mutation , NF-kappa B p52 Subunit/genetics , Adolescent , Adult , Alleles , Female , Genetic Association Studies/methods , Genotype , Humans , Immunophenotyping , Lymphocytes/metabolism , Male , Middle Aged , Pedigree , Phenotype , Exome Sequencing , Young Adult
15.
J Clin Endocrinol Metab ; 105(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32492708

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) have become increasingly recognized as facilitators of tumor development. However, the role of MDSCs in papillary thyroid carcinoma (PTC) progression has not been clearly explored. OBJECTIVE: We aimed to evaluate the levels and function of circulating MDSCs in PTC. METHODS: The proportion of circulating polymorphonuclear (PMN)-MDSCs and mononuclear-MDSCs from patients with PTC or benign thyroid nodules and healthy controls was measured using flow cytometry. For immunosuppressive activity analysis, sorted circulating MDSCs were cocultured with CD3/CD28-costimulated T lymphocytes and the proliferation of T cells was determined. PTC cell lines (TPC-1 and BC-PAP) were cocultured with PMN-MDSCs, and the effects on cell migration, invasion, proliferation, and apoptosis were evaluated. The differential expressed microribonucleic acids (RNAs) and messenger RNAs and their function were also explored in TPC-1 cells cocultured with or without PMN-MDSCs. RESULTS: PMN-MDSCs were increased in peripheral blood mononuclear cells of patients with PTC. Circulating PMN-MDSCs displayed strong T cell suppressive activity. PTC cells demonstrated enhanced invasive capabilities in vitro and in vivo when cocultured with sorted PMN-MDSCs. PMN-MDSCs decreased expression of miR-486-3p and activated nuclear factor kappa B2 (NF-κB2), a direct target of miR-486-3p. Rescue of miR-486-3p diminished the cell migration and invasion induced by PMN-MDSCs. CONCLUSION: Collectively, our work indicates that circulating PMN-MDSCs promote PTC progression. By suppressing miR-486-3p, PMN-MDSCs promote the activity of the NF-κB2 signaling pathway, resulting in accelerated invasion of PTC cells, which may provide new therapeutic strategies for treatment of thyroid cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Adolescent , Adult , Aged , Apoptosis/drug effects , Apoptosis/genetics , Cell Culture Techniques , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Coculture Techniques , Disease Progression , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , Middle Aged , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Neoplasm Invasiveness/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , T-Lymphocytes , Thyroid Cancer, Papillary/blood , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/surgery , Thyroid Gland/pathology , Thyroid Gland/surgery , Thyroid Neoplasms/blood , Thyroid Neoplasms/pathology , Thyroidectomy , Young Adult
16.
J Immunol ; 205(3): 830-841, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32591397

ABSTRACT

The BCR recognizes foreign Ags to initiate humoral immunity that needs isotype-switched Abs generated via class switch recombination (CSR); however, stimulating the BCR in the absence of costimulation (e.g., CD40) does not induce CSR; thus, it remains elusive whether and how the BCR induces CSR mechanistically. Autoreactive B cells can maintain anergy via unresponsiveness of their BCRs to self-antigens. However, it remains unknown what molecule(s) restrict BCR signaling strength for licensing BCR-induced CSR and whether deficiency of such molecule(s) disrupts autoreactive B cell anergy and causes B cell-mediated diseases by modulating BCR signaling. In this study, we employ mouse models to show that the BCR's capacity to induce CSR is restrained by B cell-intrinsic checkpoints TRAF3 and TRAF2, whose deletion in B cells enables the BCR to induce CSR in the absence of costimulation. TRAF3 deficiency permits BCR-induced CSR by elevating BCR-proximal signaling intensity. Furthermore, NF-κB2 is required for BCR-induced CSR in TRAF3-deficient B cells but not for CD40-induced or LPS-induced CSR, suggesting that TRAF3 restricts NF-κB2 activation to specifically limit the BCR's ability to induce CSR. TRAF3 deficiency also disrupts autoreactive B cell anergy by elevating calcium influx in response to BCR stimulation, leading to lymphoid organ disorders and autoimmune manifestations. We showed that TRAF3 deficiency-associated autoimmune phenotypes can be rectified by limiting BCR repertoires or attenuating BCR signaling strength. Thus, our studies highlight the importance of TRAF3-mediated restraint on BCR signaling strength for controlling CSR, B cell homeostasis, and B cell-mediated disorders.


Subject(s)
B-Lymphocytes/immunology , Clonal Anergy , Immunoglobulin Class Switching/immunology , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology , TNF Receptor-Associated Factor 3/immunology , Animals , B-Lymphocytes/cytology , Mice , Mice, Transgenic , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/immunology , Signal Transduction/genetics , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/immunology , TNF Receptor-Associated Factor 3/genetics
17.
Int J Mol Sci ; 21(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316320

ABSTRACT

Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1-/-) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34-66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Centrosome/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/deficiency , AMP-Activated Protein Kinases/genetics , Animals , Cells, Cultured , Chromosome Segregation , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B p52 Subunit/antagonists & inhibitors , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Up-Regulation
18.
Sci Rep ; 10(1): 4316, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152480

ABSTRACT

This study sought to evaluate the association of 28 single nucleotide polymorphisms (SNPs) within NFKB and inflammasome pathway genes with the risk of rheumatoid arthritis (RA) and response to TNF inhibitors (TNFi). We conducted a case-control study in a European population of 1194 RA patients and 1328 healthy controls. The association of potentially interesting markers was validated with data from the DANBIO (695 RA patients and 978 healthy controls) and DREAM (882 RA patients) registries. The meta-analysis of our data with those from the DANBIO registry confirmed that anti-citrullinated protein antibodies (ACPA)-positive subjects carrying the NFKB2rs11574851T allele had a significantly increased risk of developing RA (PMeta_ACPA + = 0.0006) whereas no significant effect was found in ACPA-negative individuals (PMeta_ACPA- = 0.35). An ACPA-stratified haplotype analysis including both cohorts (n = 4210) confirmed that ACPA-positive subjects carrying the NFKB2TT haplotype had an increased risk of RA (OR = 1.39, P = 0.0042) whereas no effect was found in ACPA-negative subjects (OR = 1.04, P = 0.82). The meta-analysis of our data with those from the DANBIO and DREAM registries also revealed a suggestive association of the NFKB2rs1056890 SNP with larger changes in DAS28 (OR = 1.18, P = 0.007). Functional experiments showed that peripheral blood mononuclear cells from carriers of the NFKB2rs1005044C allele (in LD with the rs1056890, r2 = 1.00) showed increased production of IL10 after stimulation with LPS (P = 0.0026). These results provide first evidence of a role of the NFKB2 locus in modulating the risk of RA in an ACPA-dependent manner and suggest its implication in determining the response to TNFi. Additional studies are now warranted to further validate these findings.


Subject(s)
Arthritis, Rheumatoid/etiology , Biomarkers/metabolism , NF-kappa B p52 Subunit/genetics , Polymorphism, Single Nucleotide , Tumor Necrosis Factor Inhibitors/adverse effects , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Case-Control Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Prognosis , Risk Factors
19.
Biol Reprod ; 102(6): 1290-1305, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32149334

ABSTRACT

Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Ovary/physiology , Serpins/pharmacology , Signal Transduction/physiology , Swine/physiology , Animals , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Gene Silencing , Heat-Shock Proteins , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Ovary/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Gonadotropin/genetics , Receptors, Gonadotropin/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Serpins/administration & dosage
20.
Mol Biol Rep ; 47(3): 2015-2021, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32056043

ABSTRACT

Gastric cancer is one of the most common worldwide types of cancer. It is a multifactorial disease and both environmental and genetic factors play an important role in its etiology. Evaluation of the relative expression level of NFKB2 gene in two groups of patients: peptic ulcer and gastric cancer and its role in the pathomechanism of these diseases was the aim of this study. RNA was isolated from: 79 samples of peptic ulcer, 22 gastric cancer and 11 control tissue. The real-time PCR technique was used to study the expression of NFKB2 gene. The relative expression level of NFKB2 gene was a variable in all three studied groups. The relative NFKB2 gene expression depends on the type of a disease. Peptic ulcer cases showed the increased relative NFKB2 gene expression to control group (p = 0.0000). Cancer cases presented decreased relative NFKB2 gene expression to normal stomach tissue (p = 0.0183). There are statistically important differences in the investigated gene expression between peptic ulcer, where the expression level is higher comparing to gastric cancer and control tissue which confirmed that such an activation is connected with an inflammatory process. The relative expression level of NFKB2 is decreased in cancer cases as opposed to control tissue and peptic ulcer cases which could suggest that during carcinogenesis of gastric cancer inhibition of NF-kB pathway takes place which could be a promising factor for patients.


Subject(s)
Gene Expression , Genetic Predisposition to Disease , NF-kappa B p52 Subunit/genetics , Peptic Ulcer/etiology , Stomach Neoplasms/etiology , Adult , Aged , Female , Genetic Association Studies , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Humans , Male , Middle Aged , Neoplasm Staging , Peptic Ulcer/pathology , RNA, Messenger , Stomach Neoplasms/pathology , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...