Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2021: 5546170, 2021.
Article in English | MEDLINE | ID: mdl-33997004

ABSTRACT

NOD-like receptors (NLRs) are intracellular sensors of the innate immune system that recognize intracellular pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Little information exists regarding the incidence of positive selection in the evolution of NLRs of birds or the structural differences between bird and mammal NLRs. Evidence of positive selection was identified in four avian NLRs (NOD1, NLRC3, NLRC5, and NLRP3) using the maximum likelihood approach. These NLRs are under different selection pressures which is indicative of different evolution patterns. Analysis of these NLRs showed a lower percentage of codons under positive selection in the LRR domain than seen in the studies of Toll-like receptors (TLRs), suggesting that the LRR domain evolves differently between NLRs and TLRs. Modeling of human, chicken, mammalian, and avian ancestral NLRs revealed the existence of variable evolution patterns in protein structure that may be adaptively driven.


Subject(s)
Birds/genetics , NLR Proteins , Animals , Evolution, Molecular , Humans , Models, Molecular , NLR Proteins/chemistry , NLR Proteins/classification , NLR Proteins/genetics , Protein Domains
2.
Parasit Vectors ; 14(1): 153, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712075

ABSTRACT

BACKGROUND: Toxoplasma gondii is a parasite that primarily infects through the oral route. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play crucial roles in the immune responses generated during parasitic infection and also drive the inflammatory response against invading parasites. However, little is known about the regulation of NLRs and inflammasome activation in T. gondii-infected human small intestinal epithelial (FHs 74 Int) cells. METHODS: FHs 74 Int cells infected with T. gondii were subsequently evaluated for morphological changes, cytotoxicity, expression profiles of NLRs, inflammasome components, caspase-cleaved interleukins (ILs), and the mechanisms of NLRP3 and NLRP6 inflammasome activation. Immunocytochemistry, lactate dehydrogenase assay, reverse transcription polymerase chain reaction (RT-PCR), real-time quantitative RT-PCR, and western blotting techniques were utilized for analysis. RESULTS: Under normal and T. gondii-infected conditions, members of the NLRs, inflammasome components and caspase-cleaved ILs were expressed in the FHs Int 74 cells, except for NLRC3, NLRP5, and NLRP9. Among the NLRs, mRNA expression of NOD2, NLRP3, NLRP6, and NAIP1 was significantly increased in T. gondii-infected cells, whereas that of NLRP2, NLRP7, and CIITA mRNAs decreased significantly in a time-dependent manner. In addition, T. gondii infection induced NLRP3, NLRP6 and NLRC4 inflammasome activation and production of IL-1ß, IL-18, and IL-33 in FHs 74 Int cells. T. gondii-induced NLRP3 inflammasome activation was strongly associated with the phosphorylation of p38 MAPK; however, JNK1/2 had a weak effect. NLRP6 inflammasome activation was not related to the MAPK pathway in FHs 74 Int cells. CONCLUSIONS: This study highlighted the expression profiles of NLRs and unraveled the underlying mechanisms of NLRP3 inflammasome activation in T. gondii-infected FHs 74 Int cells. These findings may contribute to understanding of the mucosal and innate immune responses induced by the NLRs and inflammasomes during T. gondii infection in FHs 74 Int cells.


Subject(s)
Epithelial Cells/parasitology , Gene Expression Regulation/immunology , Immunity, Innate , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Proteins/genetics , Cell Line , Humans , Inflammasomes/immunology , Intestine, Small/cytology , Intestine, Small/parasitology , NLR Proteins/classification , NLR Proteins/immunology , RNA, Messenger
4.
Genomics ; 112(1): 312-322, 2020 01.
Article in English | MEDLINE | ID: mdl-30802599

ABSTRACT

NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.


Subject(s)
Ascomycota , NLR Proteins/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Vitis/genetics , Vitis/microbiology , Chromosomes, Plant , Disease Resistance/genetics , Genome, Plant , Multigene Family , NLR Proteins/chemistry , NLR Proteins/classification , NLR Proteins/metabolism , Phylogeny , Plant Diseases/genetics , Plant Proteins/chemistry , Plant Proteins/classification , Plant Proteins/metabolism , Promoter Regions, Genetic
5.
Elife ; 82019 11 27.
Article in English | MEDLINE | ID: mdl-31774397

ABSTRACT

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Subject(s)
NLR Proteins/chemistry , NLR Proteins/immunology , Plant Immunity/immunology , Receptors, Immunologic/immunology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins , Carrier Proteins , Cell Death , Gene Knockout Techniques , Models, Molecular , NLR Proteins/classification , NLR Proteins/genetics , Phylogeny , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Sequence Analysis, Protein , Nicotiana/genetics , Nicotiana/immunology
6.
Curr Protein Pept Sci ; 18(4): 311-322, 2017.
Article in English | MEDLINE | ID: mdl-26983790

ABSTRACT

NOD Like Receptors (NLRs) are the most abundant cytoplasmic immune receptors in plants and animals and they similarly act sensing pathogen invasion and activating immune response. Despite the fact that plant and mammals NLRs share homology.; with some protein structure differences.; for signalling pathway.; divergent evolution of the receptors has been hypothesized. Next generation genome sequencing has contributed to the description of NLRs in phyla others than plants and mammals and leads to new knowledge about NLRs evolution along phylogeny. Full comprehension of NLR-mediated immune response in plant could contribute to the understanding of animal NLRs physiology and/or pathology.


Subject(s)
Evolution, Molecular , Invertebrates/genetics , Mammals/genetics , NLR Proteins/genetics , Plant Immunity/genetics , Plants/genetics , Animals , Gene Dosage , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Invertebrates/immunology , Invertebrates/microbiology , Invertebrates/virology , Mammals/immunology , Mammals/microbiology , Mammals/virology , NLR Proteins/classification , NLR Proteins/immunology , Phylogeny , Plants/immunology , Plants/microbiology , Plants/virology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...