Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.306
Filter
1.
J Nanobiotechnology ; 22(1): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769551

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses,  and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.


Subject(s)
Chondroitin Sulfates , Curcumin , Gelatin , Nanocapsules , Nanoparticles , Tragacanth , Curcumin/pharmacology , Curcumin/chemistry , Chondroitin Sulfates/chemistry , Gelatin/chemistry , Animals , Nanocapsules/chemistry , Nanoparticles/chemistry , Mice , Tragacanth/chemistry , RAW 264.7 Cells , Oxidative Stress/drug effects , Arthritis, Rheumatoid/drug therapy , Male , Particle Size , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/metabolism , Macrophages/drug effects , Drug Liberation , Rats
2.
Biomacromolecules ; 25(6): 3596-3606, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38754095

ABSTRACT

Poly(vinyl alcohol)s (PVAs) are very popular dispersants for the construction of colloids and common shell-constituents of microcapsules but remain mostly unexplored as building blocks for the design of nanocapsules through nanoprecipitation or other processes. Herein, we first show that model commercial PVAs and oils can be concomitantly engaged in solvent-shifting procedures to give rise to oil-filled nanocapsules in one step. Next, we report the synthesis of precisely defined water-soluble glyco-PVAs by reversible addition-fragmentation chain transfer (RAFT) copolymerization of 6-O-vinyladipoyl-d-glucopyranose and vinyl chloroacetate and selective alcoholysis reactions. We finally demonstrate that these glycopolymers are excellent candidates for the straightforward conception of oil- and drug-filled, surface- and/or core-tagged, stealth, and degradable nanocapsules by nanoprecipitation.


Subject(s)
Nanocapsules , Polyvinyl Alcohol , Nanocapsules/chemistry , Polyvinyl Alcohol/chemistry , Polymerization , Chemical Precipitation
3.
ACS Nano ; 18(21): 13950-13965, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751197

ABSTRACT

Manipulating the expression of cellular genes through efficient CRISPR/Cas9 delivery is rapidly evolving into a desirable tumor therapeutics. The exposure of CRISPR/Cas9 to a complex external environment poses challenges for conventional delivery carriers in achieving responsive and accurate release. Here, we report a Trojan horse-like nanocapsule for the on-demand delivery of CRISPR/Cas9 in a microRNA-responsive manner, enabling precise tumor therapy. The nanocapsule comprises a nanoassembled, engineered DNAzyme shell encasing a Cas9/sgRNA complex core. The DNAzyme, functioning as a catalytic unit, undergoes a conformational change in the presence of tumor-associated microRNA, followed by activating a positive feedback-driven autonomous catabolic cycle of the nanocapsule shell. This catabolic cycle is accomplished through chain reactions of DNAzyme "cleavage-hybridization-cleavage", which ensures sensitivity in microRNA recognition and effective release of Cas9/sgRNA. Utilizing this Trojan horse-like nanocapsule, as low as 1.7 pM microRNA-21 can trigger the on-demand release of Cas9/sgRNA, enabling the specific editing of the protumorigenic microRNA coding gene. The resulting upregulation of tumor suppressor genes induces apoptosis in tumor cells, leading to significant inhibition of tumor growth by up to 75.94%. The Trojan horse-like nanocapsule, with superior programmability and biocompatibility, is anticipated to serve as a promising carrier for tailoring responsive gene editing systems, achieving enhanced antitumor specificity and efficacy.


Subject(s)
CRISPR-Cas Systems , DNA, Catalytic , MicroRNAs , Nanocapsules , CRISPR-Cas Systems/genetics , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Humans , Nanocapsules/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Gene Editing , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry
4.
Int J Biol Macromol ; 270(Pt 1): 132288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735604

ABSTRACT

This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Gum Arabic , Oils, Volatile , Polysaccharides , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Gum Arabic/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cattle , Drug Compounding , Microbial Sensitivity Tests , Meat Products/microbiology , Meat Products/analysis , Plant Oils/chemistry , Plant Oils/pharmacology , Nanocapsules/chemistry , Ocimum
5.
AAPS PharmSciTech ; 25(5): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816596

ABSTRACT

Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.


Subject(s)
Cannabis , Nanoparticles , Particle Size , Plant Extracts , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cannabis/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Drug Liberation , Cannabinoids/chemistry , Cannabidiol/chemistry , Nanocapsules/chemistry , Drug Carriers/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Chitosan/chemistry , Chemistry, Pharmaceutical/methods , Alginates/chemistry , Pectins/chemistry , Gastrointestinal Tract/metabolism
6.
Sci Total Environ ; 930: 172738, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38670362

ABSTRACT

Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.


Subject(s)
Gastrointestinal Microbiome , Insecticides , Ivermectin , Nanocapsules , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Gastrointestinal Microbiome/drug effects , Bees/physiology , Bees/drug effects , Insecticides/toxicity
7.
Biomed Pharmacother ; 174: 116308, 2024 May.
Article in English | MEDLINE | ID: mdl-38626517

ABSTRACT

The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26 mg/g) and oleic acid as the main unsaturated fatty acid (180.06 mg/g). The Acurí oil-loaded nanocapsules showed a size of 237 nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75 mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40 minutes). Nanocapsules at a dose of 10 mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09 µg/mL, SI=119.61) and kidney tumor cells (IC50 3.03 µg/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000 mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.


Subject(s)
Anti-Inflammatory Agents , Nanocapsules , Plant Oils , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/administration & dosage , Plant Oils/pharmacology , Male , Humans , Rats , Rats, Wistar , Administration, Oral , Cell Line, Tumor
8.
J Control Release ; 369: 658-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38604384

ABSTRACT

Granzyme B (GrB)-based immunotherapy is of interest for cancer treatment. However, insufficient cellular uptake and a lack of targeting remain challenges to make use of GrB for solid tumour therapy. As GrB induced cell death requires the help of perforin (PFN), we designed a system (nGPM) for the co-delivery of GrB and PFN. Therefore, GrB and PFN were loaded in a porous polymeric nanocapsule rich in acetylcholine analogues and matrix metalloproteinase-2 (MMP-2) responsive peptides. The neutrally charged nGPM nanocapsules showed as long circulating time and accumulated at the tumour sites. Once in the tumour the outside shell of nanocapsules became degraded by overexpressed MMP-2 proteases, resulting in the release of GrB and PFN. We found that the PFN complex formed small pores on the surface of tumour cells which allow GrB to enter the cytoplasm of tumour cells inducing cell apoptosis and tumour suppression significantly.


Subject(s)
Granzymes , Nanocapsules , Perforin , Granzymes/metabolism , Nanocapsules/chemistry , Animals , Perforin/metabolism , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Apoptosis/drug effects , Matrix Metalloproteinase 2/metabolism , Immunotherapy/methods , Mice, Inbred BALB C , Female , Mice
9.
Nanomedicine ; 57: 102742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460654

ABSTRACT

Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.


Subject(s)
Nanocapsules , Nanocomposites , Drug Delivery Systems/methods , T-Lymphocytes , Electromagnetic Phenomena , Capsules
10.
Int J Pharm ; 656: 124029, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38527566

ABSTRACT

α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.


Subject(s)
Anti-Inflammatory Agents , Dermatitis, Atopic , Drug Liberation , Hydrogels , Mice, Inbred BALB C , Monocyclic Sesquiterpenes , Nanocapsules , Animals , Hydrogels/chemistry , Hydrogels/administration & dosage , Nanocapsules/chemistry , Dermatitis, Atopic/drug therapy , Monocyclic Sesquiterpenes/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Skin Absorption/drug effects , Particle Size , Disease Models, Animal , Mice , Administration, Cutaneous , Male , Skin/drug effects , Skin/metabolism , Skin/pathology , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/pharmacokinetics , Female
11.
Int J Food Microbiol ; 416: 110659, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38461732

ABSTRACT

Fungi are a problem for viticulture as they can lead to deterioration of grapes and mycotoxins production. Despite the widespread use of synthetic fungicides to control fungi, their impact on the agricultural ecosystem and human health demand safer and eco-friendly alternatives. This study aimed to produce, characterize and assess the antifungal activity of carvacrol loaded in nanocapsules of Eudragit® and chia mucilage as strategy for controlling Botrytis cinerea, Aspergillus flavus, Aspergillus carbonarius, and Aspergillus niger. Eudragit® and chia mucilage were suitable wall materials, as both favored the encapsulation of carvacrol into nanometric diameter particles. Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested a successful incorporation of carvacrol into both nanocapsules, which was confirmed by presenting a good encapsulation efficiency and loading capacity. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses revealed adequate thermal resistance. All fungi were sensible to carvacrol treatments and B. cinerea was the most sensitive compared to the Aspergillus species. Lower concentrations of encapsulated carvacrol than the unencapsulated form were required to inhibit fungi in the in vitro and grape assays. Additionally, lower levels of carvacrol (unencapsulated or encapsulated) were used to inhibit fungal growth and ochratoxin synthesis on undamaged grapes in comparison to those superficially damaged, highlighting the importance of management practices designed to preserve berry integrity during cultivation, storage or commercialization. When sublethal doses of carvacrol were used, the growth of A. niger and A. carbonarius was suppressed by at least 45 %, and ochratoxins were not found. The nanoencapsulation of carvacrol using Eudragit® and chia mucilage has proven to be an alternative to mitigate the problems with fungi and mycotoxins faced by the grape and wine sector.


Subject(s)
Cymenes , Mycotoxins , Nanocapsules , Ochratoxins , Polymethacrylic Acids , Vitis , Humans , Vitis/microbiology , Antifungal Agents/metabolism , Ecosystem , Mycotoxins/analysis , Aspergillus niger
12.
AAPS PharmSciTech ; 25(4): 69, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538972

ABSTRACT

Thymoquinone (TQ) is a phytochemical compound present in Nigella sativa and has potential benefits for treating dermatological conditions such as psoriasis. However, its clinical use is limited due to its restricted bioavailability, caused mainly by its low solubility and permeability. To overcome this, a new transdermal drug delivery system is required. Nanoparticles are known to enhance material solubility and permeability, and hence, this study aimed to synthesize TQ-loaded L-arginine-based polyamide (TQ/Arg PA) nanocapsules incorporated into transdermal patches for prolonged delivery of TQ. To achieve this, Eudragit E polymer, plasticizers, and aloe vera as penetration enhancer were used to develop the transdermal patch. Furthermore, novel TQ/Arg-PA was synthesized via interfacial polymerization, and the resultant nanocapsules (NCs) were incorporated into the matrix transdermal patch. The Arg-PA NCs' structure was confirmed via NMR and FTIR, and optimal TQ/Arg-PA NCs containing formulation showed high entrapment efficiency of TQ (99.60%). Molecular and thermal profiling of TQ/Arg-PA and the transdermal patch revealed the effective development of spherical NCs with an average particle size of 129.23 ± 18.22 nm. Using Franz diffusion cells and synthetic membrane (STRAT M®), the in vitro permeation profile of the prepared patches demonstrated an extended release of TQ over 24 h, with enhanced permeation by 42.64% when aloe vera was employed. In conclusion, the produced formulation has a potential substitute for corticosteroids and other drugs commonly used to treat psoriasis due to its effectiveness, safety, and lack of the side effects typically associated with other drugs.


Subject(s)
Benzoquinones , Nanocapsules , Psoriasis , Humans , Nanocapsules/chemistry , Nylons , Transdermal Patch , Psoriasis/drug therapy
13.
ACS Appl Mater Interfaces ; 16(13): 15981-15992, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507686

ABSTRACT

The success of the mRNA vaccine against COVID-19 has garnered significant interest in the development of mRNA therapeutics against other diseases, but there remains a strong need for a stable and versatile delivery platform for these therapeutics. In this study, we report on a family of robust hybrid lipid nanocapsules (hLNCs) for the delivery of mRNA. The hLNCs are composed of kolliphore HS15, labrafac lipophile WL1349, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and a conjugate of oleic acid (OA) and polyethylenimines of varying size (PEI─0.8, 1.8, and 25 kDa). They are prepared by a solvent-free, temperature-phase inversion method, yielding an average size of ∼40 nm and a particle distribution index (PDI) < 0.2. We demonstrate that the PDI remains <0.2 over a wide pH range and in a wide range of medium. We further show that the PDI and the functionality of mRNA condensed on the particles are robust to drying in a sugar glass and subsequent rehydration. Finally, we demonstrate that mRNA-loaded hLNCs yield reasonable transfection in vitro and in vivo settings.


Subject(s)
Nanocapsules , Humans , RNA, Messenger/genetics , COVID-19 Vaccines , Transfection , Lipids
14.
Food Chem ; 447: 139011, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492303

ABSTRACT

In this work, a simple synthesis of low-toxicity transition metal material of WO3-x dots was used as a co-reactant with Au@SiO2 as a core-shell material and a signal amplification factor to collaboratively promote Ru(bpy)32+ electrochemiluminescence (ECL) for the construction of a highly sensitive aptasensor for the detection of diazinon (DZN) in vegetables. Electrodes modified with multi-walled carbon nanotubes-chitosan composite membranes (MWCNTs-CS) were used to load and immobilize more Ru(bpy)32+.can load more Ru(bpy)32+. WO3-x dots synthesized by a simple method showed excellent ECL efficiency as a novel co-reactant for Ru(bpy)32+. Under optimized conditions, this aptasensor for DZN has a wide detection range (10 pg mL-1 - 1 µg mL-1.) and a low detection limit (0.0197 ng L-1). The aptasensor has shown good results in the analysis of real samples in the experiment. This work provides a new approach to the construction of a novel electrochemiluminescence sensor for the detection of pesticides.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanocapsules , Nanotubes, Carbon , Diazinon , Silicon Dioxide , Vegetables , Luminescent Measurements/methods , Gold , Biosensing Techniques/methods , Electrochemical Techniques/methods
15.
Bioresour Technol ; 399: 130563, 2024 May.
Article in English | MEDLINE | ID: mdl-38461871

ABSTRACT

An ultralight 3D carbon fiber aerogel with good flexibility is developed via soaking cotton in water and then calcinating at a high temperature. This cotton-derived carbon material is constituted by amorphous carbon and retains slight oxygen-containing groups. Besides, a lot of hollow carbon nanocapsules are yielded on the inside surface, resulting in abundant micropores and mesopores. Systemic investigations explore the molecular transformation from cotton to carbon fiber, and the formation of carbon nanocapsules. In the adsorption process for methyl orange (MO), this carbon fiber aerogel exhibits both a rapid adsorption rate and the ultrahigh adsorbability of 862.9 mg/g, outclassing most of carbon materials reported. Therefore, a dynamic sewage treatment system is built and consecutively removes hydrosoluble pollution for a long-term running time. For the cotton-derived carbon fiber aerogel, the good mechanical flexibility, excellent adsorption property, and high stability jointly provide a vast application prospect in future industrial wastewater remediation.


Subject(s)
Nanocapsules , Water Pollutants, Chemical , Carbon Fiber , Carbon , Sewage , Adsorption , Gossypium
16.
Colloids Surf B Biointerfaces ; 235: 113788, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335770

ABSTRACT

Surface modification of lipid nanocapsules (LNC) is necessary to impart stealth properties to these drug carriers and enhance their accumulation into the tumor microenvironment. While pegylation is commonly used to prolong the circulation time of LNC, the increased presence of anti-PEG antibodies in the human population and the internalization issues associated to the PEG shell are strong incentives to search alternatives. This work describes the development of amphiphilic poly(N-vinyl amide)-based (co)polymers, including pH-responsive ones, and their use as LNC modifiers towards improved drug delivery systems. RAFT polymerization gave access to a series of LNC modifiers composed of poly(N-methyl-N-vinyl acetamide), poly(N-vinyl pyrrolidone) or pH-responsive vinylimidazole-based sequence bearing a variety of lipophilic end-groups, namely octadecyl, dioctadecyl or phospholipid groups, for anchoring to the LNC. Decoration of the LNC with these families of poly(N-vinyl amide) derivatives was achieved via both post-insertion and per-formulation methods. This offered valuable and non-toxic LNC protection from opsonization by complement activation, emphasized the benefit of dioctadecyl in the per-formulation approach and highlighted the great potential of poly(N-methyl-N-vinyl acetamide) as PEG alternative. Moreover, incorporation of imidazole moieties in the shell of the carrier imparted pH-responsiveness to the LNC likely to increase the cellular uptake in the acidic tumor microenvironment, opening up new possibilities in the field of active targeting.


Subject(s)
Nanocapsules , Humans , Drug Carriers , Phospholipids , Hydrogen-Ion Concentration , Acetamides , Amides
17.
ACS Sens ; 9(3): 1199-1207, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38372695

ABSTRACT

Enzymes are essential to life and indispensable in a wide range of industries (food, pharmaceutical, medical, biosensing, etc.); however, a significant shortcoming of these fragile biological catalysts is their poor stability. To address this challenge, a variety of immobilization methods have been described to enhance the enzyme's stability. These immobilization methods generally are specific to an individual enzyme or optimal for a particular application. The aim of this study is to explore the utility of porous, indicator moiety-tagged, polymeric nanocapsules (NCs) for the encapsulation of enzymes and measurement of the enzyme's substrate. As a model enzyme, glucose oxidase (GOx) is used. The GOx enzyme-loaded, fluorophore-tagged NCs were synthesized by using self-assembled surfactant vesicle templates. To show that the biological activity of GOx is preserved during entrapment, the rate of the GOx enzyme catalyzed reaction was measured. To evaluate the protective features of the porous NCs, the encapsulated GOx enzyme activity was followed in the presence of hydrolytic enzymes. During the encapsulation of GOx and the purification of the GOx-loaded NCs, the GOx activity decayed less than 10%, and up to 30% of the encapsulated GOx activity could be retained for 3-5 days in the presence of hydrolytic enzymes. In support of the potentially unique advantages of the enzyme-loaded NCs, as a proof-of-concept example, the fluorophore-tagged, GOx-loaded NCs were used for the determination of glucose in the concentration range between 18 and 162 mg/dL and for imaging the distribution of glucose concentration in imaging experiments.


Subject(s)
Nanocapsules , Enzymes, Immobilized , Porosity , Polymers , Glucose , Indicators and Reagents , Glucose Oxidase
18.
Metab Brain Dis ; 39(4): 589-609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351421

ABSTRACT

This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (ɛ-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.


Subject(s)
Amnesia , Curcumin , Disease Models, Animal , Nanocapsules , Animals , Curcumin/pharmacology , Curcumin/administration & dosage , Curcumin/therapeutic use , Mice , Male , Amnesia/drug therapy , Amnesia/chemically induced , Oxidative Stress/drug effects , Scopolamine
19.
Sci Rep ; 14(1): 4671, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409285

ABSTRACT

Plant sterols are used as a supplement or an additive to reduce LDL cholesterol. The poor dispersibility and instability of phytosterols are the main limitations of their application. So, we tried to overcome these problems through nanoencapsulation of them with colloidal natural RSs (SLNs) using an effective approach to achieve higher efficiency and less intrinsic coagulation. Phytosterols extracted from flax seeds oil with caffeine by a new method were encapsulated with a stable colloid of sheep fat and ostrich oil (1:2), soy lecithin, and glucose through co-sonicated coacervation. Characterization of the obtained SLNs was conducted using FTIR, UV-Vis, SEM, DLS, and GC analysis. The three-factor three-level Behnken design (BBD) was used to prioritize the factors affecting the coacervation process to optimize particle size and loading capacity of SLNs. Operational conditions were examined, revealing that the size of SLNs was below 100 nm, with a phytosterols content (EE %) of 85.46% with high positive zeta potential. The nanocapsules' anti-microbial activity and drug-release behavior were then evaluated using the CFU count method and Beer-Lambert's law, respectively. The controlled release of nanocapsules (below 20%) at ambient temperature has been tested. The stability of nano-encapsulated phytosterols was investigated for six months. All results show that this green optimal coacervation is a better way than conventional methods to produce stable SLNs for the nanoencapsulation of phytosterols.


Subject(s)
Liposomes , Nanocapsules , Nanoparticles , Phytosterols , Animals , Sheep , Drug Carriers , Lipids , Particle Size
20.
Pest Manag Sci ; 80(7): 3207-3214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38353377

ABSTRACT

BACKGROUND: Conventional pesticide formulations are often inefficient because of low biological uptake after spraying. Controlled release nanopesticides can release pesticides precisely in response to specific stimuli, thereby killing pests and pathogens using the least effective concentration. This study aims to develop nanocapsule-based photo-decomposable nanopesticides for efficient pesticide control. RESULTS: The target nanopesticides were successfully fabricated using layer-by-layer assembly of the negative azobenzene-grafted hyaluronic acid (azo-HA) and positive polydimethyldiallylammonium chloride (polyDADMAC), confirmed by UV-visible, dynamic light scattering, Zeta potential and transmission electron microscopy measurements. The particle size and Zeta potential of the fabricated nanocapsules were 220 nm and +46.1 mV, respectively, and the nanocapsules were found to remain stable for up to 30 days. The optimized drug loading and encapsulation ratio of imidacloprid (IMI) in IMI/azo-HA@polyDADMAC were 21.5% and 91.3%, respectively. Cumulative release of IMI from the nanopesticides increased from ~50% to ~95% upon UV light irradiation (365 nm). The half lethal concentration (LC50) value of the nanopesticides toward Aphis craccivora Koch decreased from 2.22 to 0.55 mg L-1 upon UV light irradiation. CONCLUSION: The trans to cis transformation of the azo group in HA decomposed IMI/azo-HA@polyDADMAC nanopesticides upon UV irradiation, thus facilitating the release of IMI, resulting in a decrease in the concentration of pesticides required for efficient pesticide control. Our work demonstrated the great potential of light-responsive nanocapsules as a controlled release nanocarrier for efficient and eco-friendly pesticide control in sustainable agriculture. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Nanocapsules , Neonicotinoids , Nitro Compounds , Ultraviolet Rays , Neonicotinoids/chemistry , Nanocapsules/chemistry , Nitro Compounds/chemistry , Insecticides/chemistry , Animals , Aphids/drug effects , Delayed-Action Preparations/chemistry , Azo Compounds/chemistry , Hyaluronic Acid/chemistry , Quaternary Ammonium Compounds/chemistry , Drug Liberation , Polyethylenes
SELECTION OF CITATIONS
SEARCH DETAIL
...