Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.287
Filter
1.
J Nanobiotechnology ; 22(1): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769551

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses,  and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.


Subject(s)
Chondroitin Sulfates , Curcumin , Gelatin , Nanocapsules , Nanoparticles , Tragacanth , Curcumin/pharmacology , Curcumin/chemistry , Chondroitin Sulfates/chemistry , Gelatin/chemistry , Animals , Nanocapsules/chemistry , Nanoparticles/chemistry , Mice , Tragacanth/chemistry , RAW 264.7 Cells , Oxidative Stress/drug effects , Arthritis, Rheumatoid/drug therapy , Male , Particle Size , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/metabolism , Macrophages/drug effects , Drug Liberation , Rats
2.
Biomacromolecules ; 25(6): 3596-3606, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38754095

ABSTRACT

Poly(vinyl alcohol)s (PVAs) are very popular dispersants for the construction of colloids and common shell-constituents of microcapsules but remain mostly unexplored as building blocks for the design of nanocapsules through nanoprecipitation or other processes. Herein, we first show that model commercial PVAs and oils can be concomitantly engaged in solvent-shifting procedures to give rise to oil-filled nanocapsules in one step. Next, we report the synthesis of precisely defined water-soluble glyco-PVAs by reversible addition-fragmentation chain transfer (RAFT) copolymerization of 6-O-vinyladipoyl-d-glucopyranose and vinyl chloroacetate and selective alcoholysis reactions. We finally demonstrate that these glycopolymers are excellent candidates for the straightforward conception of oil- and drug-filled, surface- and/or core-tagged, stealth, and degradable nanocapsules by nanoprecipitation.


Subject(s)
Nanocapsules , Polyvinyl Alcohol , Nanocapsules/chemistry , Polyvinyl Alcohol/chemistry , Polymerization , Chemical Precipitation
3.
ACS Nano ; 18(21): 13950-13965, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751197

ABSTRACT

Manipulating the expression of cellular genes through efficient CRISPR/Cas9 delivery is rapidly evolving into a desirable tumor therapeutics. The exposure of CRISPR/Cas9 to a complex external environment poses challenges for conventional delivery carriers in achieving responsive and accurate release. Here, we report a Trojan horse-like nanocapsule for the on-demand delivery of CRISPR/Cas9 in a microRNA-responsive manner, enabling precise tumor therapy. The nanocapsule comprises a nanoassembled, engineered DNAzyme shell encasing a Cas9/sgRNA complex core. The DNAzyme, functioning as a catalytic unit, undergoes a conformational change in the presence of tumor-associated microRNA, followed by activating a positive feedback-driven autonomous catabolic cycle of the nanocapsule shell. This catabolic cycle is accomplished through chain reactions of DNAzyme "cleavage-hybridization-cleavage", which ensures sensitivity in microRNA recognition and effective release of Cas9/sgRNA. Utilizing this Trojan horse-like nanocapsule, as low as 1.7 pM microRNA-21 can trigger the on-demand release of Cas9/sgRNA, enabling the specific editing of the protumorigenic microRNA coding gene. The resulting upregulation of tumor suppressor genes induces apoptosis in tumor cells, leading to significant inhibition of tumor growth by up to 75.94%. The Trojan horse-like nanocapsule, with superior programmability and biocompatibility, is anticipated to serve as a promising carrier for tailoring responsive gene editing systems, achieving enhanced antitumor specificity and efficacy.


Subject(s)
CRISPR-Cas Systems , DNA, Catalytic , MicroRNAs , Nanocapsules , CRISPR-Cas Systems/genetics , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Humans , Nanocapsules/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Gene Editing , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry
4.
Int J Biol Macromol ; 270(Pt 1): 132288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735604

ABSTRACT

This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Gum Arabic , Oils, Volatile , Polysaccharides , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Gum Arabic/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cattle , Drug Compounding , Microbial Sensitivity Tests , Meat Products/microbiology , Meat Products/analysis , Plant Oils/chemistry , Plant Oils/pharmacology , Nanocapsules/chemistry , Ocimum
5.
AAPS PharmSciTech ; 25(5): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816596

ABSTRACT

Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.


Subject(s)
Cannabis , Nanoparticles , Particle Size , Plant Extracts , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cannabis/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Drug Liberation , Cannabinoids/chemistry , Cannabidiol/chemistry , Nanocapsules/chemistry , Drug Carriers/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Chitosan/chemistry , Chemistry, Pharmaceutical/methods , Alginates/chemistry , Pectins/chemistry , Gastrointestinal Tract/metabolism
6.
J Control Release ; 369: 658-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38604384

ABSTRACT

Granzyme B (GrB)-based immunotherapy is of interest for cancer treatment. However, insufficient cellular uptake and a lack of targeting remain challenges to make use of GrB for solid tumour therapy. As GrB induced cell death requires the help of perforin (PFN), we designed a system (nGPM) for the co-delivery of GrB and PFN. Therefore, GrB and PFN were loaded in a porous polymeric nanocapsule rich in acetylcholine analogues and matrix metalloproteinase-2 (MMP-2) responsive peptides. The neutrally charged nGPM nanocapsules showed as long circulating time and accumulated at the tumour sites. Once in the tumour the outside shell of nanocapsules became degraded by overexpressed MMP-2 proteases, resulting in the release of GrB and PFN. We found that the PFN complex formed small pores on the surface of tumour cells which allow GrB to enter the cytoplasm of tumour cells inducing cell apoptosis and tumour suppression significantly.


Subject(s)
Granzymes , Nanocapsules , Perforin , Granzymes/metabolism , Nanocapsules/chemistry , Animals , Perforin/metabolism , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Apoptosis/drug effects , Matrix Metalloproteinase 2/metabolism , Immunotherapy/methods , Mice, Inbred BALB C , Female , Mice
7.
Int J Pharm ; 656: 124029, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38527566

ABSTRACT

α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.


Subject(s)
Anti-Inflammatory Agents , Dermatitis, Atopic , Drug Liberation , Hydrogels , Mice, Inbred BALB C , Monocyclic Sesquiterpenes , Nanocapsules , Animals , Hydrogels/chemistry , Hydrogels/administration & dosage , Nanocapsules/chemistry , Dermatitis, Atopic/drug therapy , Monocyclic Sesquiterpenes/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Skin Absorption/drug effects , Particle Size , Disease Models, Animal , Mice , Administration, Cutaneous , Male , Skin/drug effects , Skin/metabolism , Skin/pathology , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/pharmacokinetics , Female
8.
AAPS PharmSciTech ; 25(4): 69, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538972

ABSTRACT

Thymoquinone (TQ) is a phytochemical compound present in Nigella sativa and has potential benefits for treating dermatological conditions such as psoriasis. However, its clinical use is limited due to its restricted bioavailability, caused mainly by its low solubility and permeability. To overcome this, a new transdermal drug delivery system is required. Nanoparticles are known to enhance material solubility and permeability, and hence, this study aimed to synthesize TQ-loaded L-arginine-based polyamide (TQ/Arg PA) nanocapsules incorporated into transdermal patches for prolonged delivery of TQ. To achieve this, Eudragit E polymer, plasticizers, and aloe vera as penetration enhancer were used to develop the transdermal patch. Furthermore, novel TQ/Arg-PA was synthesized via interfacial polymerization, and the resultant nanocapsules (NCs) were incorporated into the matrix transdermal patch. The Arg-PA NCs' structure was confirmed via NMR and FTIR, and optimal TQ/Arg-PA NCs containing formulation showed high entrapment efficiency of TQ (99.60%). Molecular and thermal profiling of TQ/Arg-PA and the transdermal patch revealed the effective development of spherical NCs with an average particle size of 129.23 ± 18.22 nm. Using Franz diffusion cells and synthetic membrane (STRAT M®), the in vitro permeation profile of the prepared patches demonstrated an extended release of TQ over 24 h, with enhanced permeation by 42.64% when aloe vera was employed. In conclusion, the produced formulation has a potential substitute for corticosteroids and other drugs commonly used to treat psoriasis due to its effectiveness, safety, and lack of the side effects typically associated with other drugs.


Subject(s)
Benzoquinones , Nanocapsules , Psoriasis , Humans , Nanocapsules/chemistry , Nylons , Transdermal Patch , Psoriasis/drug therapy
9.
Pest Manag Sci ; 80(7): 3207-3214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38353377

ABSTRACT

BACKGROUND: Conventional pesticide formulations are often inefficient because of low biological uptake after spraying. Controlled release nanopesticides can release pesticides precisely in response to specific stimuli, thereby killing pests and pathogens using the least effective concentration. This study aims to develop nanocapsule-based photo-decomposable nanopesticides for efficient pesticide control. RESULTS: The target nanopesticides were successfully fabricated using layer-by-layer assembly of the negative azobenzene-grafted hyaluronic acid (azo-HA) and positive polydimethyldiallylammonium chloride (polyDADMAC), confirmed by UV-visible, dynamic light scattering, Zeta potential and transmission electron microscopy measurements. The particle size and Zeta potential of the fabricated nanocapsules were 220 nm and +46.1 mV, respectively, and the nanocapsules were found to remain stable for up to 30 days. The optimized drug loading and encapsulation ratio of imidacloprid (IMI) in IMI/azo-HA@polyDADMAC were 21.5% and 91.3%, respectively. Cumulative release of IMI from the nanopesticides increased from ~50% to ~95% upon UV light irradiation (365 nm). The half lethal concentration (LC50) value of the nanopesticides toward Aphis craccivora Koch decreased from 2.22 to 0.55 mg L-1 upon UV light irradiation. CONCLUSION: The trans to cis transformation of the azo group in HA decomposed IMI/azo-HA@polyDADMAC nanopesticides upon UV irradiation, thus facilitating the release of IMI, resulting in a decrease in the concentration of pesticides required for efficient pesticide control. Our work demonstrated the great potential of light-responsive nanocapsules as a controlled release nanocarrier for efficient and eco-friendly pesticide control in sustainable agriculture. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Nanocapsules , Neonicotinoids , Nitro Compounds , Ultraviolet Rays , Neonicotinoids/chemistry , Nanocapsules/chemistry , Nitro Compounds/chemistry , Insecticides/chemistry , Animals , Aphids/drug effects , Delayed-Action Preparations/chemistry , Azo Compounds/chemistry , Hyaluronic Acid/chemistry , Quaternary Ammonium Compounds/chemistry , Drug Liberation , Polyethylenes
10.
Int J Biol Macromol ; 261(Pt 1): 129786, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286362

ABSTRACT

Characterizing the structural changes of cell-targeting delivery carriers in gastrointestinal tract (GIT) is crucial for understanding their effectiveness in cell targeting and transport. Herein, RGD peptide-grafted carboxymethyl starch (CMS) and cationic quaternary ammonium starch (QAS) were utilized to fabricate quintet-layered nanocapsules loaded with ovalbumin (OVA). The aim was to improve delivery and transportation efficiency, specifically targeting M cells. The research analyzed the impact of pH and enzyme variations in GIT on the structure of nanocapsules, interactions between carriers and the release behavior of OVA. Results showed that the size of nanocapsules increased from 229.2 to 479.8 nm and the zeta potential decreased from -1.08 to -33.33 mV during oral delivery. This was evident in TEM images, showing a more relaxed core-shell structure. Isothermal titration calorimetry and molecular dynamic simulation indicated that pH changes primarily affected the electrostatic interaction between carriers. Increasing pH led to reduced affinity constants, and around 84.42 % of OVA was successfully delivered to M cells. Moreover, the transport efficiency of nanocapsules to M cells was five times greater than that of Caco-2 cells. This suggests the feasibility of developing a nanocapsules delivery system capable of adapting to pH changes in GIT by regulating electrostatic interactions between carriers.


Subject(s)
Nanocapsules , Humans , Nanocapsules/chemistry , Drug Carriers/chemistry , Caco-2 Cells , M Cells , Starch/chemistry , Gastrointestinal Tract , Particle Size
11.
Adv Healthc Mater ; 13(11): e2303911, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38215731

ABSTRACT

Soft tissue sarcomas (STS) are highly malignant tumors with limited treatment options owing to their heterogeneity and resistance to conventional therapies. Photodynamic therapy (PDT) and poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown potential for STS treatment, with PDT being effective for sarcomas located on the extremities and body surface and PARPi targeting defects in homologous recombination repair. To address the limitations of PDT and harness the potential of PARPi, herein, a novel therapeutic approach for STS treatment combining nanocapsules bearing integrated metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), i.e., MOF@COF, with PDT and PARPi is proposed. Nanocapsules are designed, referred to as ZTN@COF@poloxamer, which contain a Zr-based MOF and tetrakis (4-carbethoxyphenyl) porphyrin as a photosensitizer, are coated with a COF to improve the sensitizing properties, and are loaded with niraparib to inhibit DNA repair. Experiments demonstrate that this new nanocapsules treatment significantly inhibits STS growth, promotes tumor cell apoptosis, exhibits high antitumor activity with minimal side effects, activates the immune response of the tumor, and inhibits lung metastasis in vivo. Therefore, MOF@COF nanocapsules combined with PARPi offer a promising approach for STS treatment, with the potential to enhance the efficacy of PDT and prevent tumor recurrence.


Subject(s)
Metal-Organic Frameworks , Nanocapsules , Photochemotherapy , Poly(ADP-ribose) Polymerase Inhibitors , Sarcoma , Photochemotherapy/methods , Animals , Nanocapsules/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Cell Line, Tumor , Sarcoma/drug therapy , Sarcoma/pathology , Humans , Apoptosis/drug effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mice, Inbred BALB C , Mice, Nude , Female
12.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 638-648, 2024 04.
Article in English | MEDLINE | ID: mdl-38282365

ABSTRACT

Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.


Subject(s)
Nanocapsules , Schizophrenia , Rats , Animals , Quetiapine Fumarate/pharmacokinetics , Dopamine , Nanocapsules/chemistry , Schizophrenia/drug therapy , Lipids
13.
Curr Pharm Biotechnol ; 25(3): 268-284, 2024.
Article in English | MEDLINE | ID: mdl-37231750

ABSTRACT

Nanocapsules are polymeric nanoparticles encased in a polymeric coating composed of a predominantly non-ionic surfactant, macromolecules, phospholipids, and an oil core. Lipophilic drugs have been entrapped using various nanocarriers, including lipid cores, likely lipid nanocapsules, solid lipid nanoparticles, and others. A phase inversion temperature approach is used to create lipid nanocapsules. The PEG (polyethyleneglycol) is primarily utilised to produce nanocapsules and is a critical parameter influencing capsule residence time. With their broad drug-loading features, lipid nanocapsules have a distinct advantage in drug delivery systems, such as the capacity to encapsulate hydrophilic or lipophilic pharmaceuticals. Lipid nanocapsules, as detailed in this review, are surface modified, contain target-specific patterns, and have stable physical and chemical properties. Furthermore, lipid nanocapsules have target-specific delivery and are commonly employed as a marker in the diagnosis of numerous illnesses. This review focuses on nanocapsule synthesis, characterisation, and application, which will help understand the unique features of nanocapsules and their application in drug delivery systems.


Subject(s)
Nanocapsules , Nanocapsules/chemistry , Drug Delivery Systems , Polymers/chemistry , Surface-Active Agents/chemistry , Lipids/chemistry , Drug Carriers/chemistry
14.
J Biomed Mater Res A ; 112(3): 402-420, 2024 03.
Article in English | MEDLINE | ID: mdl-37941485

ABSTRACT

Triple negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and it is difficult to progress through traditional chemotherapy. Therefore, the treatment of TNBC urgently requires agents with effective diagnostic and therapeutic capabilities. In this study, we obtained programmed death-ligand 1 (PD-L1) antibody conjugated gold nanoshelled poly(lactic-co-glycolic acid) (PLGA) nanocapsules (NCs) encapsulating doxorubicin (DOX) (DOX@PLGA@Au-PD-L1 NCs). PLGA NCs encapsulating DOX were prepared by a modified single-emulsion oil-in-water (O/W) solvent evaporation method, and gold nanoshells were formed on the surface by gold seed growth method, which were coupled with PD-L1 antibodies by carbodiimide method. The fabricated DOX@PLGA@Au-PD-L1 NCs exhibited promising contrast enhancement in vitro ultrasound imaging. Furthermore, DOX encapsulated in NCs displayed good pH-responsive and photo-triggered drug release properties. After irradiating 200 µg/mL NCs solution with a laser for 10 min, the solution temperature increased by nearly 23°C, indicating that the NCs had good photothermal conversion ability. The targeting experiments confirmed that the NCs had specific target binding ability to TNBC cells overexpressing PD-L1 molecules. Cell experiments exhibited that the agent significantly reduced the survival rate of TNBC cells through photochemotherapy combination therapy. As a multifunctional diagnostic agent, DOX@PLGA@Au-PD-L1 NCs could be used for ultrasound targeted contrast imaging and photochemotherapy combination therapy of TNBC cells, providing a promising idea for early diagnosis and treatment of TNBC.


Subject(s)
Glycolates , Nanocapsules , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Nanocapsules/chemistry , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Glycols , Precision Medicine , Gold/chemistry , B7-H1 Antigen , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Ultrasonography/methods , Cell Line, Tumor , Nanoparticles/chemistry
15.
Drug Deliv Transl Res ; 14(5): 1338-1351, 2024 May.
Article in English | MEDLINE | ID: mdl-37930630

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor that affects many patients diagnosed with hepatic cell inflammation and liver cirrhosis. Targeted polymeric nanocapsules could facilitate the internalization and accumulation of anticancer drugs. Dual-targeted folic acid/lactobionic acid-poly lactic co-glycolic acid nanocapsules (NCs) were prepared and loaded with pterostilbene (PTN) and characterized for their physicochemical properties, as well as in vitro and in vivo anticancer activity. NCs displayed a size of 222 nm, zeta potential of - 16.5 mV, and sustained release for 48 h. The IC50 of PTN NCs (5.87 ± 0.8 µg/mL) was 20 times lower than unencapsulated PTN (121.26 ± 9.42 µg/mL) on HepG2 liver cancer cells owing to the enhanced cellular uptake of the former, as delineated by flow cytometry. In vivo study on HCC-induced animals delineated the superiority of the dual-targeted NCs over the unencapsulated PTN, which significantly reduced the liver markers ALT, AST, and ALP, as well as the tumor-related markers AFP and Bcl2, and elevated the anti-apoptotic marker caspase 3. Furthermore, the NCs significantly reduced the oxidative stress and exhibited almost comparable histological features to the normal group. Therefore, it can be concluded that the dual-ligated folic acid/lactobionic acid nanocapsules can be considered a promising potential treatment option for hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Disaccharides , Liver Neoplasms , Nanocapsules , Animals , Humans , Carcinoma, Hepatocellular/drug therapy , Nanocapsules/chemistry , Nanocapsules/therapeutic use , Liver Neoplasms/drug therapy , Polymers/therapeutic use , Folic Acid , Cell Line, Tumor
16.
Drug Deliv Transl Res ; 14(4): 918-933, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37805955

ABSTRACT

Understanding the interactions between nanocarriers and plasma proteins is essential for controlling their biological fate. Based on the reported potential of polymeric nanocapsules (NCs) for the targeted delivery of oncological drugs, the main objective of this work has been to investigate how the surface chemical composition influences their protein corona fingerprint. Thus, we developed six NC prototypes with different polymer shells and physicochemical properties and quantified the amount of protein adsorbed upon incubation in human plasma. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) and following the Minimum Information about Nanomaterial Biocorona Experiments (MINBE) guidelines, we identified different protein corona patterns. As expected, the presence of polyethylene glycol (PEG) in the polymer shell reduced the protein corona, particularly the adsorption of immunoglobulins. However, by comparing the different prototypes, we concluded that the protein adsorption pattern was not exclusively driven by PEG. In fact, a highly PEGylated prototype exhibited intense apolipoprotein IV adsorption. On the other hand, we also observed that polymeric NCs containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) exhibited high adsorption of vitronectin, a protein that is known for enhancing the uptake of nanosystems by lung epithelium and several cancer cells. Overall, the gathered information allowed us to identify promising polymeric NCs with an expected prolonged circulation time, enhanced tumor targeting, liver accumulation, and preferential uptake by the immune system. In this sense, the analyses of the protein corona performed along this work will hopefully contribute to advancing a new generation of rationally designed nanometric drug delivery systems.


Subject(s)
Nanocapsules , Nanoparticles , Protein Corona , Humans , Nanocapsules/chemistry , Polymers , Adsorption , Polyethylene Glycols/chemistry , Blood Proteins , Nanoparticles/chemistry
17.
Int J Pharm ; 649: 123645, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38040393

ABSTRACT

Drug nanocapsules coated with iron oxide nanoparticles (SPION) were elaborated by the simultaneous nanoprecipitation of the drug and the nanoparticles, through solvent shifting. We examined four drugs: sorafenib, sorafenib tosylate, α-tocopherol and paclitaxel, to cover the cases of molecular solids, ionic solids, and molecular liquids. We first investigated the formation of the drug core in the final mixture of solvents at different concentrations. A Surfactant-Free Micro-Emulsion domain (SFME, thermodynamically stable) was observed at low drug concentration and an Ouzo domain (metastable) at high drug concentration, except for the case of paclitaxel which crystallizes at high concentration without forming an Ouzo domain. When co-nanoprecipitated with the molecular drugs in the Ouzo domain (sorafenib or α-tocopherol), the SPION limited the coalescence of the drug particles to less than 100 nm, forming capsules with a drug encapsulation efficiency of ca 80 %. In contrast, larger capsules were formed from the SFME or when using the ionic form (sorafenib tosylate). Finally, the sorafenib-SPION capsules exhibit a similar chemotherapeutic effect as the free drug on the hepatocellular carcinoma in vitro.


Subject(s)
Liver Neoplasms , Nanocapsules , Humans , Nanocapsules/chemistry , Solvents , Sorafenib , alpha-Tocopherol , Molecular Structure , Paclitaxel , Magnetic Iron Oxide Nanoparticles
18.
Int J Pharm ; 651: 123740, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38145781

ABSTRACT

Drugs with properties against oxidative and carbonyl stresses are potential candidates to prevent dry age-related macular degeneration (Dry-AMD) and inherited Stargardt disease (STGD1). Previous studies have demonstrated the capacity of a new lipophenol drug: 3-O-DHA-7-O-isopropyl-quercetin (Q-IP-DHA) to protect ARPE19 and primary rat RPE cells respectively from A2E toxicity and under oxidative and carbonyl stress conditions. In this study, first, a new methodology has been developed to access gram scale of Q-IP-DHA. After classification of the lipophenol as BCS Class IV according to physico-chemical and biopharmaceutical properties, an intravenous formulation with micelles (M) and an oral formulation using lipid nanocapsules (LNC) were developed. M were formed with Kolliphor® HS 15 and saline solution 0.9 % (mean size of 16 nm, drug loading of 95 %). The oral formulation was optimized and successfully allowed the formation of LNC (25 nm, 96 %). The evaluation of the therapeutic potency of Q-IP-DHA was performed after IV administration of micelles loaded with Q-IP-DHA (M-Q-IP-DHA) at 30 mg/kg and after oral administration of LNC loaded with Q-IP-DHA (LNC-Q-IP-DHA) at 100 mg/kg in mice. Results demonstrated photoreceptor protection after induction of retinal degeneration by acute light stress making Q-IP-DHA a promising preventive candidate against dry-AMD and STGD1.


Subject(s)
Macular Degeneration , Nanocapsules , Mice , Rats , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Micelles , Macular Degeneration/drug therapy , Macular Degeneration/prevention & control , Oxidation-Reduction , Nanocapsules/chemistry , Retinal Pigment Epithelium , Oxidative Stress
19.
AAPS PharmSciTech ; 24(7): 198, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783861

ABSTRACT

Terbinafine hydrochloride is a synthetic allylamine whose mechanism of action consists of inhibiting the enzyme squalene epoxidase that participates in the first stage of ergosterol synthesis, interfering with fungal membrane function. Ozonated oils are used for topical application of ozone, producing reactive oxygen species that cause cellular damage in microorganisms, therefore being an alternative treatment for acute and chronic skin infections. This study aimed to develop and characterize Eudragit® RS100 nanocapsules, obtained by interfacial deposition of preformed polymer method, containing 0.5% terbinafine hydrochloride and 5% ozonated sunflower seed oil as a potential treatment against dermatophytes. The polymeric nanocapsules were characterized regarding particle size, zeta potential, pH, drug content, encapsulation efficiency, and stability. The in vitro drug release, in vitro skin permeation, and in vitro antifungal activity were also evaluated. The particle size was around 150 nm with a narrow size distribution, the zeta potential was around + 6 mV, and the pH was 2.2. The drug content was close to 95% with an encapsulation efficiency of 53%. The nanocapsules were capable to control the drug release and the skin permeation. The in vitro susceptibility test showed greater antifungal activity for the developed nanocapsules, against all dermatophyte strains tested, compared to the drug solution. Therefore, the polymeric nanocapsules suspension containing terbinafine hydrochloride and ozonated oil can be considered a potential high-efficacy candidate for the treatment of dermatophytosis, with a possible reduction in the drug dose and frequency of applications. Studies to evaluate safety and efficacy in vivo still need to be performed.


Subject(s)
Arthrodermataceae , Nanocapsules , Terbinafine , Antifungal Agents , Nanocapsules/chemistry , Oils
20.
ACS Appl Mater Interfaces ; 15(43): 50330-50343, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37861446

ABSTRACT

Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 µm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.


Subject(s)
Nanocapsules , Nanocapsules/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/chemistry , Cell Line, Tumor , Paclitaxel/pharmacology , Polymers/chemistry , Erythromycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...