Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.238
Filter
1.
Food Res Int ; 188: 114475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823838

ABSTRACT

This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.


Subject(s)
Chitosan , Nanocomposites , Resins, Plant , Solubility , Waxes , Zinc Oxide , Chitosan/chemistry , Zinc Oxide/chemistry , Nanocomposites/chemistry , Resins, Plant/chemistry , Waxes/chemistry , Nanoparticles/chemistry , Food Packaging/methods , Permeability
2.
Food Res Int ; 188: 114532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823889

ABSTRACT

Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 µg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.


Subject(s)
Digestion , Luteolin , Particle Size , Soybean Proteins , Luteolin/chemistry , Soybean Proteins/chemistry , Nanocomposites/chemistry , Polysaccharides/chemistry , Hydrophobic and Hydrophilic Interactions , Glycine max/chemistry , Solubility , Functional Food , Gastrointestinal Tract/metabolism
3.
Food Microbiol ; 122: 104559, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839223

ABSTRACT

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Subject(s)
Camelus , Cheese , Food Storage , Gelatin , Listeria monocytogenes , Nanocomposites , Zinc Oxide , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Cheese/microbiology , Gelatin/chemistry , Gelatin/pharmacology , Animals , Nanocomposites/chemistry , Food Preservation/methods , Meat/microbiology , Food Microbiology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pomegranate/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Rosmarinus/chemistry , Refrigeration , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
AAPS PharmSciTech ; 25(5): 130, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844611

ABSTRACT

Naringenin (NRG) inhibits the fungal 17ß-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1ß and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.


Subject(s)
Antifungal Agents , Candida albicans , Chitosan , Flavanones , Gels , Mice, Inbred BALB C , Nanocomposites , Zinc Oxide , Animals , Flavanones/administration & dosage , Flavanones/pharmacology , Mice , Candida albicans/drug effects , Chitosan/chemistry , Chitosan/administration & dosage , Nanocomposites/chemistry , Nanocomposites/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/pharmacokinetics , Zinc Oxide/administration & dosage , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Drug Delivery Systems/methods , Skin/metabolism , Skin/drug effects , Skin/microbiology , Candidiasis/drug therapy , Polymers/chemistry , Skin Absorption/drug effects , Particle Size , Administration, Cutaneous
5.
Mikrochim Acta ; 191(7): 367, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832980

ABSTRACT

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Subject(s)
Electrochemical Techniques , Food Analysis , Hazard Analysis and Critical Control Points , Nanocomposites , Zearalenone , Zearalenone/analysis , Hazard Analysis and Critical Control Points/methods , Food Analysis/instrumentation , Food Analysis/methods , Nanocomposites/chemistry , Nanocomposites/standards , Electrodes , Gold/chemistry , Sensitivity and Specificity , Reproducibility of Results
6.
J Contemp Dent Pract ; 25(3): 221-225, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690693

ABSTRACT

AIM: This study aimed to assess the color stability of bioactive restorative materials vs nanohybrid resin composites after 3 months of immersion in three frequently consumed beverages. MATERIALS AND METHODS: Thirty disk-shaped specimens of Giomer dental restorative material (Shofu, Japan) and nanohybrid resin composite (Tokuyama, Japan) were performed using a Teflon mold. Super-Snap system (Shofu, Japan) was utilized to finish and polish the specimens to be preserved for 24 hours in distilled water at 37°C. The samples had been divided into three subgroups (Coffee, tea, Pepsi) (n = 5). The initially displayed color measurements of the samples were performed using a spectrophotometer (VITA Easyshade® V). After 7 days, 30 days, and 90 days, color measurements were repeated, and the E of each sample was estimated. E of each sample was calculated. RESULTS: The Giomer group showed statistically significant higher E values than the nanohybrid resin composite where the p-value was ≤0.0001. Tea subgroup showed the highest statistically significant E values in both groups where the p-value was ≤ 0.0001. The highest statistically significant color change was recorded at 3 months. CONCLUSION: The color of bioactive restorative material is less stable if compared with nanohybrid resin composite. CLINICAL SIGNIFICANCE: As tea and coffee are popular beverages, particularly in Middle Eastern nations, dentists must advise patients about the color change of resin restorations. Patients are advised to brush their teeth immediately after consuming these beverages. How to cite this article: Saber EH, Abielhassan MH, Abed YA, et al. Color Stability of Bioactive Restorative Material vs Nanohybrid Resin Composite: An In Vitro Study. J Contemp Dent Pract 2024;25(3):221-225.


Subject(s)
Color , Composite Resins , Materials Testing , Tea , Composite Resins/chemistry , In Vitro Techniques , Coffee , Spectrophotometry , Dental Restoration, Permanent , Nanocomposites/chemistry , Dental Materials/chemistry , Humans , Beverages
7.
Sci Rep ; 14(1): 10508, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714808

ABSTRACT

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Subject(s)
Agar , Fibroins , Hydrogels , Nanocomposites , Tragacanth , Fibroins/chemistry , Humans , Hydrogels/chemistry , Agar/chemistry , Nanocomposites/chemistry , Tragacanth/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , HEK293 Cells , Zinc/chemistry , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Microbial Sensitivity Tests , MCF-7 Cells , Cell Line, Tumor
8.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695943

ABSTRACT

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Subject(s)
Arsenic , Durapatite , Fluorides , Nanocomposites , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Nanocomposites/chemistry , Durapatite/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Biomass , Kinetics , Drinking Water/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
Luminescence ; 39(5): e4753, 2024 May.
Article in English | MEDLINE | ID: mdl-38698700

ABSTRACT

A simple and environmentally friendly method was developed for smart and efficient waterborne polyurethane (PUR) paint. Sugarcane bagasse was recycled into reduced graphene oxide nanosheets (rGONSs). Both lanthanide-doped aluminate nanoparticles (LAN; photoluminescent agent, 7-9 nm) and rGONSs (reinforcement agent) were integrated into a waterborne polyurethane to produce a novel photoluminescent, hydrophobic, and anticorrosive nanocomposite coating. Using ferrocene-based oxidation under masked circumstances, graphene oxide nanosheets were produced from sugarcane bagasse. The oxidized semicarbazide (SCB) nanostructures were integrated into polyurethane coatings as a drying, anticorrosion, and crosslinking agent. Polyurethane coatings with varying amounts of phosphor pigment were prepared and subsequently applied to mild steel. The produced paints (LAN/rGONSs@PUR) were tested for their hydrophobicity, hardness, and scratch resistance. Commission Internationale de l'éclairage (CIE) Laboratory parameters and photoluminescence analysis established the opacity and colourimetric properties of the nanocomposite coatings. When excited at 365 nm, the luminescent transparent paints emitted a strong greenish light at 517 nm. The anticorrosion characteristics of the coated steel were investigated. The phosphor-containing (11% w/w) polyurethane coatings displayed the most pronounced anticorrosion capability and long-persistent luminosity. The prepared waterborne polyurethane paints were very photostable and durable.


Subject(s)
Graphite , Hydrophobic and Hydrophilic Interactions , Nanocomposites , Paint , Polyurethanes , Polyurethanes/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Luminescence , Corrosion , Green Chemistry Technology
10.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704412

ABSTRACT

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Subject(s)
Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
11.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38717599

ABSTRACT

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Subject(s)
Benzidines , Colorimetry , Copper , Phytosterols , Colorimetry/methods , Phytosterols/analysis , Phytosterols/chemistry , Copper/chemistry , Benzidines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Oxidation-Reduction
12.
Am J Dent ; 37(2): 66-70, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704848

ABSTRACT

PURPOSE: To evaluate the effect of different finishing and polishing systems on the surface roughness of a resin composite subjected to simulated saliva-, acid-, and enzyme-induced degradation. METHODS: 160 specimens (n= 40) were fabricated with Filtek Z350 XT nanofilled composite and analyzed for average surface roughness (Ra). The specimens were finished and polished using: AD - Al2O3-impreginated rubberized discs (medium, fine, and superfine grit, Sof-Lex); SD - silicon carbide and Al2O3-impregnated rubberized discs (coarse, medium and fine grit, Jiffy,); MB - 12- and 30-multiblade burs. The control group (CT) (n= 40) comprised specimens with a Mylar-strip-created surface. Specimens from each group were immersed in 1 mL of one of the degradation methods (n= 10): artificial saliva (ArS: pH 6.75), cariogenic challenge (CaC: pH 4.3), erosive challenge (ErC: 0.05M citric acid, pH 2.3) or enzymatic challenge (EzC: artificial saliva with 700 µg/mL of albumin, pH 6.75). The immersion period simulated a time frame of 180 days. Ra measurements were also performed at the post-polishing and post-degradation time points. The data were evaluated by three-way ANOVA for repeated measures and the Tukey tests. RESULTS: There was significant interaction between the finishing/polishing system and the degradation method (P= 0.001). AD presented the greatest smoothness, followed by SD. After degradation, CT, AD and SD groups became significantly rougher, but not the MB group, which presented no difference in roughness before or after degradation. CT and AD groups showed greater roughness in CaC, ErC and EzC than in ArS. The SD group showed no difference in roughness when the specimens were polished with CaC, EzC or ArS, but those treated with ErC had greater roughness. In the MB group, the lower roughness values were found after using CaC and EzC, while the higher values were found using ErC or ArS. CLINICAL SIGNIFICANCE: As far as degradation resistance of nanofilled composite to hydrolysis, bacterial and dietary acids and enzymatic reactions is concerned, restorations that had been finished and polished with Al2O3-impregnated discs had the smoothest surfaces.


Subject(s)
Aluminum Oxide , Composite Resins , Dental Polishing , Saliva, Artificial , Silicon Compounds , Surface Properties , Composite Resins/chemistry , Dental Polishing/methods , Humans , Saliva, Artificial/chemistry , Hydrogen-Ion Concentration , Aluminum Oxide/chemistry , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Materials Testing , Nanocomposites/chemistry , Citric Acid/chemistry , Saliva/enzymology , Saliva/metabolism , Saliva/chemistry , Tooth Erosion , Rubber/chemistry , Dental Materials/chemistry
13.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731558

ABSTRACT

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Subject(s)
Cellulose , Escherichia coli , Metal Nanoparticles , Silver , Staphylococcus aureus , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Cellulose/chemistry , Cellulose/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanofibers/chemistry , Nanocomposites/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
14.
Sci Rep ; 14(1): 10798, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734777

ABSTRACT

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Subject(s)
Biocompatible Materials , Bone Substitutes , Durapatite , Nanocomposites , Silicates , Durapatite/chemistry , Nanocomposites/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Silicates/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Drug Liberation , Dexamethasone/chemistry , Dexamethasone/pharmacology , Polymers/chemistry , Humans , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared , Animals
15.
Environ Monit Assess ; 196(6): 552, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755295

ABSTRACT

The TiO2 nanocomposite efficiency was determined under optimized conditions with activated carbon to remove ammoniacal nitrogen (NH3-N) from the leachate sample. In this work, the facile impregnation and pyrolysis synthesis method was employed to prepare the nanocomposite, and their formation was confirmed using the FESEM, FTIR, XRD, and Raman studies. In contrast, Raman phonon mode intensity ratio ID/IG increases from 2.094 to 2.311, indicating the increase of electronic conductivity and defects with the loading of TiO2 nanoparticles. The experimental optimal conditions for achieving maximum NH3-N removal of 75.8% were found to be a pH of 7, an adsorbent mass of 1.75 mg/L, and a temperature of 30 °C, with a corresponding time of 160 min. The experimental data were effectively fitted with several isotherms (Freundlich, Hill, Khan, Redlich-Peterson, Toth, and Koble-Corrigan). The notably elevated R2 value of 0.99 and a lower ARE % of 14.61 strongly support the assertion that the pseudo-second-order model compromises a superior depiction of the NH3-N reduction process. Furthermore, an effective central composite design (CCD) of response surface methodology (RSM) was employed, and the lower RMSE value, precisely 0.45, demonstrated minimal disparity between the experimentally determined NH3-N removal percentages and those predicted by the model. The subsequent utilization of the desirability function allowed us to attain actual variable experimental conditions.


Subject(s)
Charcoal , Nitrogen , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Ammonia/chemistry , Adsorption , Models, Chemical , Waste Disposal, Fluid/methods , Nanocomposites/chemistry
16.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718634

ABSTRACT

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Glucose , Limit of Detection , Nanocomposites , Nanotubes, Carbon , Sweat , Wearable Electronic Devices , Humans , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Sweat/chemistry , Nanocomposites/chemistry , Glucose/analysis , Glucose Oxidase/chemistry , Ink , Electrochemical Techniques , Ferric Compounds/chemistry , Ferrocyanides/chemistry , Polymers/chemistry , Reproducibility of Results , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polystyrenes
17.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772662

ABSTRACT

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Indoles/chemistry , Catalysis , Limit of Detection , Nanostructures/chemistry , Nanocomposites/chemistry , Imidazoles , Polymers , Zeolites
18.
Mikrochim Acta ; 191(6): 336, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777836

ABSTRACT

A nanocomposite of Ce-doped ZnO/r-GO was synthesized using a conventional hydrothermal method. The synthesized nanocomposites were utilized for the purpose of sensitive and selective detection of cyclobenzaprine hydrochloride (CBP). The properties of the composite were extensively analyzed, including its morphology, structure, and electrochemical behavior. This study investigates the application of a modified glassy carbon electrode for the detection of CBP, a muscle relaxant used to treat musculoskeletal diseases that cause muscle spasms. The electrode is modified with Ce-doped ZnO/r-GO. Various detection methods, such as cyclic voltammetric and square wave techniques (SWV), were utilized. The composite material showed high effectiveness as an electron transfer mediator in the oxidation of CBP. The electrode showed a good response for SWV evaluations in CBP identification, with a minimum detection limit of 1.6 × 10-8 M and a wide linear range from 10 × 10-6 M to 0.6 × 10-7 M, under ideal conditions. The rate constant for charge transfer (ks) and the estimation of the electrochemical active surface area were obtained. A developed sensor exhibited desirable selectivity, long-lasting stability, and remarkable reproducibility. A sensor was used to analyze water, human serum, and urine samples, resulting in positive recovery results.


Subject(s)
Amitriptyline , Electrochemical Techniques , Electrodes , Limit of Detection , Zinc Oxide , Zinc Oxide/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Amitriptyline/chemistry , Amitriptyline/urine , Amitriptyline/blood , Amitriptyline/analogs & derivatives , Nanocomposites/chemistry , Humans , Muscle Relaxants, Central/chemistry , Muscle Relaxants, Central/urine , Muscle Relaxants, Central/blood , Muscle Relaxants, Central/analysis , Reproducibility of Results
19.
Environ Monit Assess ; 196(6): 569, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777943

ABSTRACT

Nanomaterials are widely employed in wastewater treatment, among which nanoferrites and their composites hold significant prominence. This study adopts a green approach to synthesize zinc ferrite nanoparticles, subsequently integrating them with polyaniline (PANI) to fabricate the ZnFe2O4-PANI nanocomposite. Characterization of the prepared ZnFe2O4-PANI nanocomposite was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. Using Scherrer's equation, the crystallite size of the synthesized zinc ferrite nanoparticles was found to be 17.67 nm. SEM micrographs of the ZnFe2O4-PANI nanocomposite revealed that in situ polymerization of ZnFe2O4 with polyaniline transforms the amorphous surface morphology of the polymer into a homogeneous nanoparticle structure. The adsorption of crystal violet (CV) dye onto the surface of the ZnFe2O4-PANI nanocomposite depends on pH, adsorbent dosage, temperature, concentration levels and duration. The Langmuir adsorption model fitted the data well, indicating adherence to a pseudo-second-order kinetic pattern. Thermodynamic values ΔG°, ΔH° and ΔS° indicated that the adsorption process occurred spontaneously. Advantages and disadvantages of the technique have also been highlighted. Mechanism of adsorption is discussed. From the obtained results, it is evident that the ZnFe2O4-PANI nanocomposite holds promise as a sorbent for the removal of dye from wastewater.


Subject(s)
Aniline Compounds , Ferric Compounds , Gentian Violet , Nanocomposites , Water Pollutants, Chemical , Zinc , Aniline Compounds/chemistry , Gentian Violet/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Ferric Compounds/chemistry , Zinc/chemistry , Adsorption , Waste Disposal, Fluid/methods , Kinetics , Water Purification/methods
20.
Environ Monit Assess ; 196(6): 570, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778004

ABSTRACT

Heavy metals significantly impact the environment due to their non-biodegradable, toxic, and carcinogenic behaviors. Lead contaminants impose severe health impacts on humans and the water environment. Therefore, eco-friendly and efficient lead ion removal practices such as nanotechnology are an urgent requirement for the abatement of lead pollution. In the present study, nanocellulose was synthesized from the cotton straw residue using chemical methods and modified with titanium dioxide to form a nanocomposite. The nanocomposite synthesized was characterized by using FTIR, XRD, FESEM, and BET. FTIR results noticed peaks at 1648.43 and 1443.57 cm-1 for cellulose and Ti-O-Ti bonding at 505.02 cm-1. The nanocomposite was noticed to be disordered and irregular in shape. The nanocomposite has particle sizes of 83 nm. The nanocomposite crystalline particle had 65% anatase and 32% rutile phases observed from the XRD result. BET results show that the surface area of nanocellulose increases after surface modification from 25.692 to 42.510 m2/g. The adsorption capacity of the nanocomposite was 0.552 mg/g was noticed. The Elovich kinetic and Baudu isotherms are the best-fitted models for lead ion adsorption. Thermodynamic parameters resulted in Gibbs free energy decreasing with temperature. This study revealed that modified cellulosic adsorbents efficiently absorbed lead ions derived from cotton straws.


Subject(s)
Cellulose , Lead , Water Pollutants, Chemical , Lead/chemistry , Cellulose/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Nanocomposites/chemistry , Titanium/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...