Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Chem Biomol Eng ; 6: 247-66, 2015.
Article in English | MEDLINE | ID: mdl-25938922

ABSTRACT

Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)2(Te,Se)3, PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.


Subject(s)
Electric Power Supplies , Nanocomposites/chemistry , Nanotechnology/methods , Bismuth/chemistry , Copper/chemistry , Electric Conductivity , Lead/chemistry , Nanocomposites/economics , Nanocomposites/ultrastructure , Nanotechnology/economics , Nanotechnology/instrumentation , Selenium Compounds/chemistry , Silver Compounds/chemistry , Tellurium/chemistry , Thermal Conductivity
2.
J Microbiol Methods ; 111: 111-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25681736

ABSTRACT

The purpose of this work was proof of concept to develop a novel, cost effective protocol for the binding of bacteriophages to a surface without loss of function, after storage in various media. The technology platform involved covalently bonding bacteriophage 13 (a Pseudomonas aeruginosa bacteriophage) to two magnetised multiwalled carbon nanotube scaffolds using a series of buffers; bacteriophage-nanotube (B-N) conjugates were efficacious after storage at 20 °C for six weeks. B-N conjugates were added to human cell culture in vitro for 9 days without causing necrosis and apoptosis. B-N conjugates were frozen (-20 °C) in cell culture media for several weeks, after which recovery from the human cell culture medium was possible using a simple magnetic separation technique. The retention of viral infective potential was demonstrated by subsequent spread plating onto lawns of susceptible P. aeruginosa. Analysis of the human cell culture medium revealed the production of interleukins by the human fibroblasts upon exposure to the bacteriophage. One day after exposure, IL-8 levels transitorily increased between 60 and 100 pg/mL, but this level was not found on any subsequent days, suggesting an initial but not long lasting response. This paper outlines the development of a method to deliver antimicrobial activity to a surface that is small enough to be combined with other materials. To our knowledge at time of publication, this is the first report of magnetically coupled bacteriophages specific to human pathogens which can be recovered from test systems, and could represent a novel means to conditionally deploy antibacterial agents into living eukaryotic systems without the risks of some antibiotic therapies.


Subject(s)
Nanocomposites/virology , Nanotubes, Carbon/virology , Pseudomonas Phages , Cells, Cultured , Culture Media , Ferric Compounds , Ferrosoferric Oxide , Fibroblasts/immunology , Fibroblasts/virology , Humans , Interleukin-8/immunology , Interleukin-8/metabolism , Magnetic Phenomena , Nanocomposites/economics , Nanotubes, Carbon/economics , Pseudomonas Phages/chemistry , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/virology
3.
Proc Natl Acad Sci U S A ; 110(21): 8459-64, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23650396

ABSTRACT

Creation of affordable materials for constant release of silver ions in water is one of the most promising ways to provide microbially safe drinking water for all. Combining the capacity of diverse nanocomposites to scavenge toxic species such as arsenic, lead, and other contaminants along with the above capability can result in affordable, all-inclusive drinking water purifiers that can function without electricity. The critical problem in achieving this is the synthesis of stable materials that can release silver ions continuously in the presence of complex species usually present in drinking water that deposit and cause scaling on nanomaterial surfaces. Here we show that such constant release materials can be synthesized in a simple and effective fashion in water itself without the use of electrical power. The nanocomposite exhibits river sand-like properties, such as higher shear strength in loose and wet forms. These materials have been used to develop an affordable water purifier to deliver clean drinking water at US $2.5/y per family. The ability to prepare nanostructured compositions at near ambient temperature has wide relevance for adsorption-based water purification.


Subject(s)
Biopolymers/chemistry , Drinking Water/chemistry , Nanocomposites/chemistry , Water Purification/methods , Nanocomposites/economics , Silver/chemistry , Water Purification/economics
4.
Acta Biomater ; 7(11): 3813-28, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21784182

ABSTRACT

Tissue engineering utilizes expertise in the fields of materials science, biology, chemistry, transplantation medicine, and engineering to design materials that can temporarily serve in a structural and/or functional capacity during regeneration of a defect. Hydroxyapatite (HAp) scaffolds are among the most extensively studied materials for this application. However, HAp has been reported to be too weak to treat such defects and, therefore, has been limited to non-load-bearing applications. To capitalize the advantages of HAp and at the same time overcome the drawbacks nanocrystalline HAp (nHAp) is combined with various types of bioactive polymers to generate highly porous biocomposite materials that are used for osteoconduction in the field of orthopedic surgery. In this study we have reviewed nanosized HAp-based highly porous composite materials used for bone tissue engineering, introduced various fabrication methods to prepare nHAp/polymer composite scaffolds, and characterized these scaffolds on the basis of their biodegradability and biocompatibility through in vitro and in vivo tests. Finally, we provide a summary and our own perspectives on this active area of research.


Subject(s)
Bone Regeneration , Bone Substitutes/chemistry , Durapatite/chemistry , Nanocomposites/economics , Polymers/chemistry , Animals , Bone Substitutes/chemical synthesis , Durapatite/chemical synthesis , Humans , Materials Testing/methods , Polymers/chemical synthesis , Porosity
5.
Nano Lett ; 10(8): 2742-8, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20218653

ABSTRACT

Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.


Subject(s)
Conservation of Natural Resources , Materials Testing , Molecular Mimicry , Nanocomposites , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...