Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Adv Food Nutr Res ; 88: 167-234, 2019.
Article in English | MEDLINE | ID: mdl-31151724

ABSTRACT

Electrospinning and electrospraying are versatile techniques for the production of nano- to micro-scale fibers and particles. Over the past 2 decades, significant progresses have been made to advance the fundamental understandings of these electrohydrodynamic processes. Researchers have investigated different polymeric and non-polymeric substrates for producing submicron electrospun/electrosprayed materials of unique morphologies and physicochemical properties. This chapter provides an overview on the basic principles of electrospinning and electrospraying, highlighting the effects of key processing and solution parameters. Electrohydrodynamic phenomena of edible substrates, including polysaccharides (xanthan, alginate, starch, cyclodextrin, pullulan, dextran, modified celluloses, and chitosan), proteins (zein, what gluten, whey protein, soy protein, gelatin, etc.), and phospholipids are reviewed. Selected examples are presented on how ultrafine fibers and particles derived from these substrates are being exploited for food and nutraceutical applications. Finally, the challenges and opportunities of the electrostatic methods are discussed.


Subject(s)
Food Technology/methods , Nanofibers/supply & distribution , Nanoparticles/supply & distribution , Nanofibers/chemistry , Nanoparticles/chemistry , Static Electricity
2.
São José dos Campos; s.n; 2019. 85 p. il., tab., graf..
Thesis in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1047520

ABSTRACT

Os atuais avanços no desenvolvimento de biomateriais caminham para 2 áreas promissoras: a de regeneração tecidual e a de entrega controlada de fármacos. Assim, o presente estudo objetivou a síntese e caracterização de diferentes matrizes (fibras e hidrogel) à base de quitosana, a fim de se obter materiais biomiméticos para atuação em ambas áreas. Para regeneração, delineou-se a síntese de um arcabouço de fibras de quitosana com e sem cristais de nanohidroxiapatita onde, para isso, foram eletrofiadas soluções de quitosana (Ch) e de quitosana com nanohidroxiapatita (ChHa). Os espécimes de Ch apresentaram maior homogeneidade e maior diâmetro médio de fibras (690 ± 102 nm) que ChHa (358 ± 49 nm). No teste de viabilidade celular e na atividade da fosfatase alcalina não houve diferença estatística entre os grupos experimentais (Ch e ChHa), porém ambos diferiram do grupo controle (p < 0,001). Para o âmbito de liberação de fármacos, sintetizou-se, pela técnica de emulsão, dois tipos de hidrogéis: o primeiro, uma mistura da fase aquosa da solução de Ch (1 mL) e da solução de DNA (1 mL) (1:1) e o segundo, mistura da fase aquosa da solução de Ch (1 mL) e solução de Pectina (1 mL) (1:1). Ambas misturas foram realizadas em álcool benzílico (5 mL) com instrumento de dispersão de alto desempenho (31-34000 rpm min-1 por 5 min). Após a obtenção dos géis, 20mg de cada grupo foram imersos em uma solução aquosa de Própolis Verde (PV), na concentração de 70 µg/mL por 2 h e a cinética de liberação do PV foi analisada a 25 e 37oC em água e saliva artificial. Os espécimes obtidos foram liofilizados e depois caracterizados físicoquimicamente. A presença de pectina e de DNA foi comprovada por FTIR. A sorção de PV induziu uma modificação significativa da superfície do gel. Constatou-se uma separação de fases entre a quitosana e o DNA. A eficiência do encapsulamento não mudou significativamente entre 25 e 37oC. A cinética de liberação na água ou na saliva apresentou um mecanismo de duas etapas. E os resultados biológicos exibiram que esses materiais são aceitáveis no ambiente biológico. Assim, conclui-se que a matriz de fibras de quitosana com nHAp é capaz de promover diferenciação celular e a matriz de hidrogel de quitosana com Pectina ou DNA possui potencial para a liberação controlada de fármacos(AU)


Current advances in biomaterial development are moving to 2 promising areas: tissue regeneration and controlled drug delivery. Thus, the present study aimed the synthesis and characterization of different matrices (fibers and hydrogel) based on chitosan, in order to obtain biomimetic materials for performance in both areas. For regeneration, the synthesis of a scaffold of chitosan fibers with and without nanohydroxyapatite crystals was delineated, where chitosan (Ch) and chitosan with hydroxyapatite (ChHa) solutions were electrospun. Ch specimens presented higher homogeneity and larger mean fiber diameter (690±102nm) than ChHa (358 ± 49nm). In the cell viability test and alkaline phosphatase activity there was no statistical difference between the experimental groups. (Ch and ChHa), but both differed from the control group (p < 0,001). For the drug release scope, two types of hydrogels were synthesized by the emulsion technique: the first, a mixture of the aqueous phase of Ch solution (1 mL) and DNA solution (1 mL) (1:1) and the second, mixture of the aqueous phase of the Ch solution (1mL) and Pectin solution (1 mL) (1:1). Both mixtures were performed in benzyl alcohol (5 mL) with high performance dispersion instrument (31-34000 rpm min-1 for 5 min). After obtaining the gels, 20mg from each group were immersed in an aqueous solution of Propolis Green (PV), at a concentration of 70 µg/mL for 2 h and the release kinetics of PV were analyzed at 25 and 37oC in water and artificial saliva. The obtained specimens were lyophilized and then physically-chemically characterized. The presence of pectin and DNA was confirmed by FTIR. PV sorption induced a significant modification of the gel surface. A phase separation was found between chitosan and DNA. Encapsulation efficiency did not change significantly between 25 and 37oC. The release kinetics in water or saliva presented a two-step mechanism. And the biological results showed that these materials are acceptable in the biological environment. Thus, it is concluded that the nHAp chitosan fiber matrix is capable of promoting cell differentiation, whereas the chitosan hydrogel matrix with Pectin or DNA are potential biomaterials for controlled drug release(AU)


Subject(s)
Chitosan/administration & dosage , DNA/blood , Drug Delivery Systems/adverse effects , Hydrogel, Polyethylene Glycol Dimethacrylate/analysis , Nanofibers/supply & distribution
3.
J Occup Environ Med ; 53(6 Suppl): S62-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21654420

ABSTRACT

OBJECTIVE: Toxicology studies suggest that carbon nanotube (CNT) exposures may cause adverse pulmonary effects. This study identified all US engineered carbonaceous nanomaterial (ECN) manufacturers, determined workforce size and growth, and characterized the materials produced to determine the feasibility of occupational ECN exposure studies. METHODS: Eligible companies were identified; information was assembled on the companies and nanomaterials they produced; and the workforce size, location, and growth were estimated. RESULTS: Sixty-one companies manufacturing ECN in the United States were identified. These companies employed at least 620 workers; workforce growth was projected at 15% to 17% annually. Most companies produced or used CNT. Half the eligible companies provided information about material dimensions, quantities, synthesis methods, and worker exposure reduction strategies. CONCLUSIONS: Industrywide exposure assessment studies appear feasible; however, cohort studies are likely infeasible because of the small, scattered workforce.


Subject(s)
Nanotechnology/statistics & numerical data , Epidemiologic Research Design , Fullerenes/supply & distribution , Graphite/supply & distribution , Humans , Nanofibers/supply & distribution , Nanotubes, Carbon/supply & distribution , Surveys and Questionnaires , United States , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL
...