Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.276
Filter
1.
AAPS PharmSciTech ; 25(5): 126, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834910

ABSTRACT

In the dynamic landscape of pharmaceutical advancements, the strategic application of active pharmaceutical ingredients to the skin through topical and transdermal routes has emerged as a compelling avenue for therapeutic interventions. This non-invasive approach has garnered considerable attention in recent decades, with numerous attempts yielding approaches and demonstrating substantial clinical potential. However, the formidable barrier function of the skin, mainly the confinement of drugs on the upper layers of the stratum corneum, poses a substantial hurdle, impeding successful drug delivery via this route. Ultradeformable vesicles/carriers (UDVs), positioned within the expansive realm of nanomedicine, have emerged as a promising tool for developing advanced dermal and transdermal therapies. The current review focuses on improving the passive dermal and transdermal targeting capacity by integrating functionalization groups by strategic surface modification of drug-loaded UDV nanocarriers. The present review discusses the details of case studies of different surface-modified UDVs with their bonding strategies and covers the recent patents and clinical trials. The design of surface modifications holds promise for overcoming existing challenges in drug delivery by marking a significant leap forward in the field of pharmaceutical sciences.


Subject(s)
Administration, Cutaneous , Drug Carriers , Drug Delivery Systems , Skin Absorption , Skin , Humans , Drug Delivery Systems/methods , Skin/metabolism , Skin Absorption/physiology , Skin Absorption/drug effects , Drug Carriers/chemistry , Animals , Nanoparticles/chemistry , Surface Properties , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Nanomedicine/methods
2.
Nanotechnology ; 35(33)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829163

ABSTRACT

Dry eye disease (DED) is a major global eye disease leading to severe eye discomfort and even vision impairment. The incidence of DED has been gradually increasing with the high frequency of use of electronic devices. It has been demonstrated that celastrol (Cel) has excellent therapeutic efficacy in ocular disorders. However, the poor water solubility and short half-life of Cel limit its further therapeutic applications. In this work, a reactive oxygen species (ROS) sensitive polymeric micelle was fabricated for Cel delivery. The micelles improve the solubility of Cel, and the resulting Cel loaded micelles exhibit an enhanced intervention effect for DED. Thein vitroresults demonstrated that Cel-nanomedicine had a marked ROS responsive release behavior. The results ofin vitroandin vivoexperiments demonstrated that Cel has excellent biological activities to alleviate inflammation in DED by inhibiting TLR4 signaling activation and reducing pro-inflammatory cytokine expression. Therefore, the Cel nanomedicine can effectively eliminate ocular inflammation, promote corneal epithelial repair, and restore the number of goblet cells and tear secretion, providing a new option for the treatment of DED.


Subject(s)
Dry Eye Syndromes , Micelles , Nanomedicine , Pentacyclic Triterpenes , Reactive Oxygen Species , Triterpenes , Dry Eye Syndromes/drug therapy , Pentacyclic Triterpenes/pharmacology , Animals , Reactive Oxygen Species/metabolism , Mice , Nanomedicine/methods , Triterpenes/pharmacology , Triterpenes/chemistry , Inflammation/drug therapy , Toll-Like Receptor 4/metabolism , Humans , Tears/metabolism , Tears/drug effects
3.
Int J Nanomedicine ; 19: 4857-4875, 2024.
Article in English | MEDLINE | ID: mdl-38828195

ABSTRACT

Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.


Subject(s)
Blood-Brain Barrier , Brain , Drug Delivery Systems , Nanomedicine , Humans , Nanomedicine/methods , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Animals , Nanoparticles/chemistry , Brain Diseases/drug therapy , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacokinetics , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy
4.
Nat Commun ; 15(1): 3857, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719843

ABSTRACT

Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.


Subject(s)
Nanomedicine , Catalysis , Humans , Nanomedicine/methods , Industry , Nanotechnology/methods
5.
Int J Nanomedicine ; 19: 3919-3942, 2024.
Article in English | MEDLINE | ID: mdl-38708176

ABSTRACT

Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.


Subject(s)
Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Nanomedicine/methods , Animals , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
6.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731563

ABSTRACT

The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.


Subject(s)
Drug Delivery Systems , Nanomedicine , Humans , Nanomedicine/methods , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Immunotherapy/methods , Nanostructures/chemistry , Nanostructures/therapeutic use
7.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731586

ABSTRACT

Nanomedicine has revolutionized drug delivery in the last two decades. Nanoparticles appear to be a promising drug delivery platform in the treatment of various gynecological disorders including uterine leiomyoma, endometriosis, polycystic ovarian syndrome (PCOS), and menopause. Nanoparticles are tiny (mean size < 1000 nm), biodegradable, biocompatible, non-toxic, safe, and relatively inexpensive materials commonly used in imaging and the drug delivery of various therapeutics, such as chemotherapeutics, small molecule inhibitors, immune mediators, protein peptides and non-coding RNA. We performed a literature review of published studies to examine the role of nanoparticles in treating uterine leiomyoma, endometriosis, PCOS, and menopause. In uterine leiomyoma, nanoparticles containing 2-methoxyestradiole and simvastatin, promising uterine fibroid treatments, have been effective in significantly inhibiting tumor growth compared to controls in in vivo mouse models with patient-derived leiomyoma xenografts. Nanoparticles have also shown efficacy in delivering magnetic hyperthermia to ablate endometriotic tissue. Moreover, nanoparticles can be used to deliver hormones and have shown efficacy as a mechanism for transdermal hormone replacement therapy in individuals with menopause. In this review, we aim to summarize research findings and report the efficacy of nanoparticles and nanotherapeutics in the treatment of various benign gynecologic conditions.


Subject(s)
Genital Diseases, Female , Nanomedicine , Nanoparticles , Humans , Female , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Genital Diseases, Female/drug therapy , Drug Delivery Systems , Leiomyoma/drug therapy , Endometriosis/drug therapy , Polycystic Ovary Syndrome/drug therapy
8.
J Med Virol ; 96(5): e29680, 2024 May.
Article in English | MEDLINE | ID: mdl-38767144

ABSTRACT

Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.


Subject(s)
Antioxidants , COVID-19 Drug Treatment , Ginkgolides , Glutathione Peroxidase , Nanomedicine , Nanoparticles , Oxidative Stress , Oxidative Stress/drug effects , Humans , Antioxidants/pharmacology , Ginkgolides/pharmacology , Nanomedicine/methods , Glutathione Peroxidase/metabolism , COVID-19/metabolism , Lactones/pharmacology , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , SARS-CoV-2/drug effects , Neurons/drug effects , Neurons/virology
9.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760755

ABSTRACT

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Lipoproteins, HDL , Macrophages , Monocytes , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Lipoproteins, HDL/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Animals , Cardiovascular Diseases/drug therapy , Monocytes/drug effects , Nanoparticles/chemistry , Atherosclerosis/drug therapy , Plaque, Atherosclerotic/drug therapy , Nanomedicine/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
10.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745193

ABSTRACT

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cell Survival , Mitoxantrone , Organosilicon Compounds , Humans , Breast Neoplasms/drug therapy , Female , Cell Survival/drug effects , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mitoxantrone/pharmacology , Mitoxantrone/chemistry , Mitoxantrone/therapeutic use , Cell Line, Tumor , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Porosity , Drug Liberation , Nanoparticles/chemistry , MCF-7 Cells , Nanomedicine/methods , Reactive Oxygen Species/metabolism
11.
Biomed Mater ; 19(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38697209

ABSTRACT

In the field of medicine, we often brave the unknown like interstellar explorers, especially when confronting the formidable opponent of hepatocellular carcinoma (HCC). The global burden of HCC remains significant, with suboptimal treatment outcomes necessitating the urgent development of novel drugs and treatments. While various treatments for liver cancer, such as immunotherapy and targeted therapy, have emerged in recent years, improving their transport and therapeutic efficiency, controlling their targeting and release, and mitigating their adverse effects remains challenging. However, just as we grope through the darkness, a glimmer of light emerges-nanotechnology. Recently, nanotechnology has attracted attention because it can increase the local drug concentration in tumors, reduce systemic toxicity, and has the potential to enhance the effectiveness of precision therapy for HCC. However, there are also some challenges hindering the clinical translation of drug-loaded nanoparticles (NPs). Just as interstellar explorers must overcome interstellar dust, we too must overcome various obstacles. In future researches, the design and development of nanodelivery systems for novel drugs treating HCC should be the first attention. Moreover, researchers should focus on the active targeting design of various NPs. The combination of the interventional therapies and drug-loaded NPs will greatly advance the process of precision HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Humans , Nanoparticles/chemistry , Animals , Drug Delivery Systems , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Nanotechnology/methods , Nanomedicine/methods , Immunotherapy/methods , Drug Carriers/chemistry
12.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791398

ABSTRACT

Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Nanotechnology/methods , Nanomedicine/methods , Animals , Tumor Microenvironment/immunology , T-Lymphocytes/immunology , Antigens, Neoplasm/immunology
13.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791578

ABSTRACT

Nanoparticles and nanomaterials are important, because they are potentially applicable to energy, storage, bioimaging, biosensors, catalysts, nanomedicine, batteries, solar energy, bioenergy, and so on (Figure 1) [...].


Subject(s)
Nanostructures , Nanostructures/chemistry , Nanomedicine/methods , Biosensing Techniques/methods , Nanotechnology/methods , Humans , Solar Energy , Nanoparticles/chemistry
14.
Biomed Mater ; 19(4)2024 May 29.
Article in English | MEDLINE | ID: mdl-38697197

ABSTRACT

Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Cell Membrane , Nanoparticles , Humans , Cell Membrane/metabolism , Bacterial Infections/drug therapy , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Nanomedicine/methods , Inflammation , Nanotechnology/methods , Drug Delivery Systems , Bacteria , Theranostic Nanomedicine/methods
15.
Int J Nanomedicine ; 19: 4021-4040, 2024.
Article in English | MEDLINE | ID: mdl-38736657

ABSTRACT

Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.


Subject(s)
Cataract , Drug Delivery Systems , Nanomedicine , Humans , Cataract/drug therapy , Nanomedicine/methods , Drug Delivery Systems/methods , Nanoparticles/chemistry , Animals , Lens, Crystalline/drug effects , Cataract Extraction , Nanoparticle Drug Delivery System/chemistry , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacokinetics , Ophthalmic Solutions/administration & dosage
16.
Arch Biochem Biophys ; 756: 110022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697343

ABSTRACT

Cancer treatment has seen significant advancements with the introduction of Onco-immunotherapies (OIMTs). Although some of these therapies have received approval for use, others are either undergoing testing or are still in the early stages of development. Challenges persist in making immunotherapy widely applicable to cancer treatment. To maximize the benefits of immunotherapy and minimize potential side effects, it's essential to improve response rates across different immunotherapy methods. A promising development in this area is the use of extracellular vesicles (EVs) as novel delivery systems. These small vesicles can effectively deliver immunotherapies, enhancing their effectiveness and reducing harmful side effects. This article discusses the importance of integrating nanomedicines into OIMTs, highlighting the challenges with current anti-OIMT methods. It also explores key considerations for designing nanomedicines tailored for OIMTs, aiming to improve upon existing immunotherapy techniques. Additionally, the article looks into innovative approaches like biomimicry and the use of natural biomaterial-based nanocarriers (NCs). These advancements have the potential to transform the delivery of immunotherapy. Lastly, the article addresses the challenges of moving OIMTs from theory to clinical practice, providing insights into the future of using advanced nanotechnology in cancer treatment.


Subject(s)
Extracellular Vesicles , Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Animals , Nanomedicine/methods
17.
Mol Pharm ; 21(6): 2970-2980, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742943

ABSTRACT

One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.


Subject(s)
Doxorubicin , Nanoparticles , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Animals , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Mice , Liposomes/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Tissue Distribution , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Mice, Inbred BALB C , Liver/drug effects , Liver/metabolism , Particle Size , Nanomedicine/methods , Humans , Male , Female
18.
Biomed Pharmacother ; 175: 116702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729052

ABSTRACT

In recent years, nanoparticles have been broadly utilized in various drugs delivery formulations. Nanodelivery systems have shown promise in solving problems associated with the distribution of hydrophobic drugs and have promoted the accumulation of nanomedicines in the circulation or in organs. However, the injection dose of nanoparticles (NPs) is much greater than that needed by diseased tissues or organs. In other words, most of the NPs are localized off-target and do not reach the desired tissue or organs. With the rapid development of biodegradable and biosafety nanomaterials, the nanovectors represent assurance of safety. However, the off-target effects also induce concerns about the application of NPs, especially in the delivery of gene editing tools. Therefore, a complete understanding of the biological responses to NPs in the body will clearly guide the design of targeted delivery of NPs. The different properties of various nanodelivery systems may induce diverse interactions between carriers and organs. In this review, we describe the relationship between the liver, the most influenced organ of systemic administration of NPs, and targeted delivery nanoplatforms. Various transport vehicles have adopted multiple delivery strategies for the targeted delivery to the cells in the homeostasis liver and in diseased liver. Additionally, nanodelivery systems provide a novel strategy for treating incurable diseases. The appearance of a targeted delivery has profoundly improved the application of NPs to liver diseases.


Subject(s)
Drug Delivery Systems , Liver Diseases , Nanoparticles , Humans , Liver Diseases/drug therapy , Liver Diseases/metabolism , Animals , Drug Delivery Systems/methods , Nanoparticle Drug Delivery System/chemistry , Liver/metabolism , Liver/drug effects , Drug Carriers/chemistry , Nanomedicine/methods
19.
Biomaterials ; 309: 122606, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38776593

ABSTRACT

Carbon monoxide (CO) has emerged as a potential antitumor agent by inducing the dysfunction of mitochondria and the apoptosis of cancer cells. However, it remains challenging to deliver appropriate amount of CO into tumor to ensure efficient tumor growth suppression with minimum side effects. Herein we developed a CO prodrug-loaded nanomedicine based on the self-assembly of camptothecin (CPT) polyprodrug amphiphiles. The polyprodrug nanoparticles readily dissociate upon exposure to endogenous H2O2 in the tumor, resulting in rapid release of CPT and generation of high-energy intermediate dioxetanedione. The latter can transfer the energy to neighboring CO prodrugs to activate CO production by chemiexcitation, while CPT promotes the generation of H2O2 in tumors, which in turn facilitates cascade CPT and CO release. As a result, the polyprodrug nanoparticles display remarkable tumor suppression in both subcutaneous and orthotopic breast tumor-bearing mice owing to the self-augmented CPT release and CO generation. In addition, no obvious systemic toxicity was observed in mice treated with the metal-free CO prodrug-loaded nanomedicine, suggesting the good biocompatibility of the polyprodrug nanoparticles. Our work provides new insights into the design and construction of polyprodrug nanomedicines for synergistic chemo/gas therapy.


Subject(s)
Camptothecin , Carbon Monoxide , Nanomedicine , Nanoparticles , Prodrugs , Animals , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/therapeutic use , Nanomedicine/methods , Camptothecin/pharmacology , Camptothecin/therapeutic use , Camptothecin/administration & dosage , Camptothecin/chemistry , Female , Humans , Carbon Monoxide/chemistry , Nanoparticles/chemistry , Cell Line, Tumor , Mice, Inbred BALB C , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Hydrogen Peroxide/chemistry , Mice, Nude
20.
Biomed Pharmacother ; 175: 116776, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788546

ABSTRACT

Choroidal neovascularization (CNV), characterized as a prominent feature of wet age-related macular degeneration (AMD), is a primary contributor to visual impairment and severe vision loss globally, while the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells is dictated by angiogenic growth factors alone. Even though treatments targeting vascular endothelial growth factor (VEGF), like Ranibizumab, are widely administered, more than half of the patients still exhibit inadequate or null responses, emphasizing the imperative need for solutions to this problem. Here, aiming to explore therapeutic strategies from a novel perspective of endothelial cell metabolism, a biocompatible nanomedicine delivery system is constructed by loading RGD peptide-modified liposomes with 2-deoxy-D-glucose (RGD@LP-2-DG). RGD@LP-2-DG displayed good targeting performance towards endothelial cells and excellent in vitro and in vivo inhibitory effects on neovascularization were demonstrated. Moreover, our mechanistic studies revealed that 2-DG interfered with N-glycosylation, leading to the inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream signaling. Notably, the remarkable inhibitory effect on neovascularization and biocompatibility of RGD@LP-2-DG render it a highly promising and clinically translatable therapeutic candidate for the treatment of wet AMD and other angiogenic diseases, particularly in patients who are unresponsive to currently available treatments.


Subject(s)
Choroidal Neovascularization , Deoxyglucose , Liposomes , Nanomedicine , Oligopeptides , Vascular Endothelial Growth Factor Receptor-2 , Wet Macular Degeneration , Oligopeptides/chemistry , Animals , Humans , Nanomedicine/methods , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/administration & dosage , Vascular Endothelial Growth Factor Receptor-2/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Mice , Mice, Inbred C57BL , Endothelial Cells/drug effects , Endothelial Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...