Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.294
Filter
1.
Food Chem ; 451: 139507, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38696940

ABSTRACT

In the domain of infant nutrition, optimizing the absorption of crucial nutrients such as vitamin D3 (VD3) is paramount. This study harnessed dynamic-high-pressure microfluidization (DHPM) on soybean protein isolate (SPI) to engineer SPI-VD3 nanoparticles for fortifying yogurt. Characterized by notable binding affinity (Ka = 0.166 × 105 L·mol-1) at 80 MPa and significant surface hydrophobicity (H0 = 3494), these nanoparticles demonstrated promising attributes through molecular simulations. During simulated infant digestion, the 80 MPa DHPM-treated nanoparticles showcased an impressive 74.4% VD3 bioaccessibility, delineating the pivotal roles of hydrophobicity, bioaccessibility, and micellization dynamics. Noteworthy was their traversal through the gastrointestinal tract, illuminating bile salts' crucial function in facilitating VD3 re-encapsulation, thereby mitigating crystallization and augmenting absorption. Moreover, DHPM treatment imparted enhancements in nanoparticle integrity and hydrophobic properties, consequently amplifying VD3 bioavailability. This investigation underscores the potential of SPI-VD3 nanoparticles in bolstering VD3 absorption, thereby furnishing invaluable insights for tailored infant nutrition formulations.


Subject(s)
Biological Availability , Cholecalciferol , Digestion , Hydrophobic and Hydrophilic Interactions , Soybean Proteins , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Humans , Cholecalciferol/chemistry , Cholecalciferol/metabolism , Infant , Models, Biological , Nanoparticles/chemistry , Nanoparticles/metabolism
2.
J Nanobiotechnology ; 22(1): 183, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622691

ABSTRACT

BACKGROUND: The use of cells as carriers for the delivery of nanoparticles is a promising approach in anticancer therapy, mainly due to their natural properties, such as biocompatibility and non-immunogenicity. Cellular carriers prevent the rapid degradation of nanoparticles, improve their distribution, reduce cytotoxicity and ensure selective delivery to the tumor microenvironment. Therefore, we propose the use of phagocytic cells as boron carbide nanoparticle carriers for boron delivery to the tumor microenvironment in boron neutron capture therapy. RESULTS: Macrophages originating from cell lines and bone marrow showed a greater ability to interact with boron carbide (B4C) than dendritic cells, especially the preparation containing larger nanoparticles (B4C 2). Consequently, B4C 2 caused greater toxicity and induced the secretion of pro-inflammatory cytokines by these cells. However, migration assays demonstrated that macrophages loaded with B4C 1 migrated more efficiently than with B4C 2. Therefore, smaller nanoparticles (B4C 1) with lower toxicity but similar ability to activate macrophages proved to be more attractive. CONCLUSIONS: Macrophages could be promising cellular carriers for boron carbide nanoparticle delivery, especially B4C 1 to the tumor microenvironment and thus prospective use in boron neutron capture therapy.


Subject(s)
Boron Neutron Capture Therapy , Nanoparticles , Boron , Cell Line, Tumor , Nanoparticles/metabolism , Macrophages
3.
Science ; 384(6694): 385-386, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662849

ABSTRACT

Quantitative analysis of biodistribution and clearance may improve nanoparticle development.


Subject(s)
Nanomedicine , Nanoparticles , Animals , Humans , Drug Delivery Systems , Drug Development , Nanomedicine/trends , Nanoparticles/metabolism , Nanoparticles/therapeutic use , Tissue Distribution
4.
Plant Physiol Biochem ; 210: 108598, 2024 May.
Article in English | MEDLINE | ID: mdl-38608503

ABSTRACT

Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.


Subject(s)
Ecosystem , Nanoparticles , Plants , Plants/metabolism , Plants/drug effects , Nanoparticles/metabolism , Photosynthesis/drug effects
5.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657165

ABSTRACT

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Subject(s)
Nanoparticles , Solanum lycopersicum , Sulfur , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Sulfur/metabolism , Sulfur/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Photosynthesis , Surface Properties , Time Factors , Fertilizers , Stearic Acids/metabolism , Stearic Acids/chemistry , Plant Leaves/metabolism
6.
Langmuir ; 40(15): 7781-7790, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38572817

ABSTRACT

The distinct features of nanoparticles have provided a vast opportunity of developing new diagnosis and therapy strategies for miscellaneous diseases. Although a few nanomedicines are available in the market or in the translation stage, many important issues are still unsolved. When entering the body, nanomaterials will be quickly coated by proteins from their surroundings, forming a corona on their surface, the so-called protein corona. Studies have shown that the protein corona has many important biological implications, particularly at the in vivo level. For example, they can promote the immune system to rapidly clear these outer materials and prevent nanoparticles from playing their designed role in therapy. In this Perspective, the available techniques for characterizing protein-nanoparticle interactions are critically summarized. Effects of nanoparticle properties and environmental factors on protein corona formation, which can further regulate the in vivo fate of nanoparticles, are highlighted and discussed. Moreover, recent progress on the biomedical application of protein corona-engineered nanoparticles is introduced, and future directions for this important yet challenging research area are also briefly discussed.


Subject(s)
Nanoparticles , Protein Corona , Protein Corona/metabolism , Nanoparticles/metabolism , Proteins/metabolism , Nanomedicine , Protein Binding
7.
J Hazard Mater ; 470: 134204, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579586

ABSTRACT

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Subject(s)
Ascomycota , Selenious Acid , Selenium , Selenious Acid/metabolism , Selenium/metabolism , Ascomycota/metabolism , Oxidation-Reduction , Nanoparticles/chemistry , Nanoparticles/metabolism , Metal Nanoparticles/chemistry , Biodegradation, Environmental , Fungal Proteins/metabolism , Proteomics
8.
ACS Nano ; 18(11): 7825-7836, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38452271

ABSTRACT

Lipid nanoparticles (LNPs), a nonviral nucleic acid delivery system, have shown vast potential for vaccine development and disease treatment. LNPs assist mRNA to cross physiological barriers such as cell membranes and endosomes/lysosomes, promoting the intracellular presentation of mRNA. However, the endosome escape efficiency and biosafety of currently commercialized LNPs are still unsatisfactory, resulting in underutilization of mRNA. Herein, we report that fluorinated modification of the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-2000 (PEG-DSPE), termed as FPD, in the LNPs can improve the delivery efficiency of mRNA. FPD accounts for only 1.5% of lipids in LNPs but could mediate a 5-fold and nearly 2-fold enhancement of mRNA expression efficiency in B16F10 tumor cells and primary dendritic cells, respectively. Mechanism studies reveal that FPD promotes the cellular internalization of LNPs as well as endosome escape. In vivo studies substantiate that FPD can augment overall mRNA expression at least 3-fold, either by intravenous or intraperitoneal injection, compared to LNPs prepared with nonfluorinated PEG-lipids at a relatively low mRNA dose. Besides, with the introduction of FPD, mRNA expression in the spleen augmented compared to that of the DMG-PEG commercial formulations. Benefiting from a prudent dosage of fluorine, the fluorinated LNPs display favorable biosafety profiles at cellular and zoological levels.


Subject(s)
Lipids , Nanoparticles , Polyethylene Glycols , RNA, Messenger/genetics , RNA, Messenger/metabolism , Liposomes , Nanoparticles/metabolism , RNA, Small Interfering
9.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473711

ABSTRACT

Serum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids. Being acceptors of electrons and ligands, ShC NPs are capable of exhibiting both their own biological activity and significantly affecting conformational and phase transformations in protein systems.


Subject(s)
Graphite , Nanoparticles , Protein Corona , Animals , Cattle , Serum Albumin/metabolism , Protein Corona/metabolism , Nanoparticles/metabolism , Serum Albumin, Bovine , Carbon , Fatty Acids
10.
Int J Nanomedicine ; 19: 2529-2552, 2024.
Article in English | MEDLINE | ID: mdl-38505170

ABSTRACT

The blood-brain barrier (BBB) and blood-tumor barrier (BTB) pose substantial challenges to efficacious drug delivery for glioblastoma multiforme (GBM), a primary brain tumor with poor prognosis. Nanoparticle-based combinational strategies have emerged as promising modalities to overcome these barriers and enhance drug penetration into the brain parenchyma. This review discusses various nanoparticle-based combinatorial approaches that combine nanoparticles with cell-based drug delivery, viral drug delivery, focused ultrasound, magnetic field, and intranasal drug delivery to enhance drug permeability across the BBB and BTB. Cell-based drug delivery involves using engineered cells as carriers for nanoparticles, taking advantage of their intrinsic migratory and homing capabilities to facilitate the transport of therapeutic payloads across BBB and BTB. Viral drug delivery uses engineered viral vectors to deliver therapeutic genes or payloads to specific cells within the GBM microenvironment. Focused ultrasound, coupled with microbubbles or nanoparticles, can temporarily disrupt the BBB to increase drug permeability. Magnetic field-guided drug delivery exploits magnetic nanoparticles to facilitate targeted drug delivery under an external magnetic field. Intranasal drug delivery offers a minimally invasive avenue to bypass the BBB and deliver therapeutic agents directly to the brain via olfactory and trigeminal pathways. By combining these strategies, synergistic effects can enhance drug delivery efficiency, improve therapeutic efficacy, and reduce off-target effects. Future research should focus on optimizing nanoparticle design, exploring new combination strategies, and advancing preclinical and clinical investigations to promote the translation of nanoparticle-based combination therapies for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Drug Delivery Systems , Brain/metabolism , Nanoparticles/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Tumor Microenvironment
11.
Anal Chem ; 96(14): 5570-5579, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529613

ABSTRACT

Rational design and robust formulation processes are critical for optimal delivery of mRNA by lipid nanoparticles (LNPs). Varying degrees of heterogeneity in mRNA-LNPs can affect their biophysical and functional properties. Given the profound complexity of mRNA-LNPs, it is critical to develop comprehensive and orthogonal analytical techniques for a better understanding of these formulations. To this end, we developed a robust ultracentrifugation method for density-based separation of subpopulations of mRNA-LNPs. Four LNP formulations encapsulating human erythropoietin (hEPO) with varying functionalities were synthesized using two ionizable lipids, A and B, and two helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dierucoyl-sn-glycero-3-phosphoethanolamine (DEPE), along with cholesterol and DMG-PEG-2K. Upon ultracentrifugation on a sucrose gradient, a distinct pattern of "fractions" was observed across the gradient, from the less dense topmost fraction to the increasingly denser bottom fractions, which were harvested for comprehensive analyses. Parent LNPs, A-DOPE and B-DOPE, were resolved into three density-based fractions, each differing significantly in the hEPO expression following intravenous and intramuscular routes of administration. Parent B-DEPE LNPs resolved into two density-based fractions, with most of the payload and lipid content being attributed to the topmost fraction compared to the lower one, indicating some degree of heterogeneity, while parent A-DEPE LNPs showed remarkable homogeneity, as indicated by comparable in vivo potency, lipid numbers, and particle count among the three density-based fractions. This study is the first to demonstrate the application of density gradient-based ultracentrifugation (DGC) for a head-to-head comparison of heterogeneity as a function of biological performance and biophysical characteristics of parent mRNA-LNPs and their subpopulations.


Subject(s)
Lipids , Nanoparticles , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Liposomes , Nanoparticles/metabolism , RNA, Small Interfering/genetics
12.
Nanoscale ; 16(14): 6876-6899, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38506154

ABSTRACT

The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Drug Delivery Systems/methods , Photochemotherapy/methods , Neoplasms/drug therapy , Combined Modality Therapy , Nanoparticles/metabolism
13.
ACS Appl Mater Interfaces ; 16(13): 15819-15831, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517139

ABSTRACT

Nanoparticles usually enter cells through energy-dependent endocytosis that involves their cytosolic entry via biomembrane-coated endosomes. In contrast, direct translocation of nanoparticles with straight access to cytosol/subcellular components without any membrane coating is limited to very selective conditions/approaches. Here we show that nanoparticles can switch from energy-dependent endocytosis to energy-independent direct membrane penetration once an amphiphile is electrostatically bound to their surface. Compared to endocytotic uptake, this direct cell translocation is faster and nanoparticles are distributed inside the cytosol without any lysosomal trafficking. We found that this direct cell translocation option is sensitive to the charges of both the nanoparticles and the amphiphile. We propose that an electrostatically bound amphiphile induces temporary opening of the cell membrane, which allows direct cell translocation of nanoparticles. This approach can be adapted for efficient subcellular targeting of nanoparticles and nanoparticle-based drug delivery application, bypassing the endosomal trapping and lysosomal degradation.


Subject(s)
Nanoparticles , Cytosol/metabolism , Nanoparticles/metabolism , Endocytosis , Endosomes/metabolism , Drug Delivery Systems
14.
AAPS J ; 26(3): 35, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514482

ABSTRACT

Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.


Subject(s)
Nanoparticles , Silicon Dioxide , Tissue Distribution , Silicon Dioxide/toxicity , Silicon Dioxide/pharmacokinetics , Silicon Dioxide/therapeutic use , Drug Delivery Systems , Nanoparticles/metabolism , Treatment Outcome , Drug Carriers
15.
Expert Opin Drug Deliv ; 21(2): 229-244, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344809

ABSTRACT

INTRODUCTION: Triple-negative breast cancer (TNBC) presents unique challenges in diagnosis and treatment. Resveratrol exhibits potential as a therapeutic intervention against TNBC by regulating various pathways such as the PI3K/AKT, RAS/RAF/ERK, PKCδ, and AMPK, leading to apoptosis through ROS-mediated CHOP activationand the expression of DR4 and DR5. However, the clinical efficacy of resveratrol is limited due to its poor biopharmaceutical characteristics and low bioavailability at the tumor site. Nanotechnology offers a promising approach to improving the biopharmaceutical characteristics of resveratrol to achieve clinical efficacy in different cancers. The small dimension (<200 nm) of nanotechnology-mediated drug delivery system is helpful to improve the bioavailability, internalization into the TNBC cell, ligand-specific targeted delivery of loaded resveratrol to tumor site including reversal of MDR (multi-drug resistance) condition. AREAS COVERED: This manuscript provides a comprehensive discussion on the structure-activity relationship (SAR), underlying anticancer mechanism, evidence of anticancer activity in in-vitro/in-vivo investigations, and the significance of nanotechnology-mediated delivery of resveratrol in TNBC. EXPERT OPINION: Advanced nano-formulations of resveratrol such as oxidized mesoporous carbon nanoparticles, macrophage-derived vesicular system, functionalized gold nanoparticles, etc. have increased the accumulation of loaded therapeutics at the tumor-site, and avoid off-target drug release. In conclusion, nano-resveratrol as a strategy may provide improved tumor-specific image-guided treatment options for TNBC utilizing theranostic approach.


Subject(s)
Biological Products , Metal Nanoparticles , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Resveratrol/therapeutic use , Gold , Phosphatidylinositol 3-Kinases/therapeutic use , Nanotechnology , Cell Line, Tumor , Nanoparticles/metabolism
16.
Adv Drug Deliv Rev ; 207: 115196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336090

ABSTRACT

Intranasal delivery provides a direct and non-invasive method for drugs to reach the central nervous system. Nanoparticles play a crucial role as carriers in augmenting the efficacy of brain delivery. However, the interaction between nanoparticles and the nose-to-brain pathway and how the various biopharmaceutical factors affect brain delivery efficacy remains unclear. In this review, we comprehensively summarized the anatomical and physiological characteristics of the nose-to-brain pathway and the obstacles that hinder brain delivery. We then outlined the interaction between nanoparticles and this pathway and reviewed the biomedical applications of various nanoparticulate drug delivery systems for nose-to-brain drug delivery. This review aims at inspiring innovative approaches for enhancing the effectiveness of nose-to-brain drug delivery in the treatment of different brain disorders.


Subject(s)
Brain , Nanoparticles , Humans , Administration, Intranasal , Brain/metabolism , Drug Delivery Systems/methods , Pharmaceutical Preparations/metabolism , Nanoparticles/metabolism
17.
Int J Biol Macromol ; 262(Pt 1): 130060, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340938

ABSTRACT

Cordyceps sinensis exopolysaccharide­selenium nanoparticles (EPS-SeNPs) were successfully constructed, characterized, and its Se release kinetics and mechanism were also evaluated in our previous studies. However, the intestinal cellular uptake and transport capacities of EPS-SeNPs remain unknown. On the basis of our previous researches, this work was designed to evaluate the uptake and transport capacities of EPS-SeNPs (EPS/Se = 20/1, 3/1, 1/1, and 3/4) in intestinal epithelial (Caco-2) cells. Confocal laser scanning microscopy results indicated that the internalization of coumarin-6 labeled EPS-SeNPs was in a time-dependent process and eventually located in the cytoplasm, not in the nucleus. Endocytosis inhibitors were employed to evaluate the cellular uptake pathway of EPS-SeNPs, relevant results revealed that clathrin-, caveolae-, and energy-mediated pathways were participated in the internalization of EPS-SeNPs by Caco-2 cells. In addition, the transportation of EPS-SeNPs across Caco-2 cell monolayers was in a concentration-dependent manner. Different particle sizes of EPS-SeNPs presented different uptake and transport capacities in Caco-2 cells. Noteworthy, EPS/Se = 3/4 with the highest selenium content possessed the most superior cellular uptake and transport abilities in Caco-2 cells. The present work may contribute to illustrate the internalization and transport mechanism of EPS-SeNPs, thus facilitating its application in food and medical industries.


Subject(s)
Cordyceps , Nanoparticles , Selenium , Humans , Caco-2 Cells , Selenium/pharmacology , Particle Size , Nanoparticles/metabolism
18.
Sci Total Environ ; 922: 171299, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423318

ABSTRACT

After aging in the environment, some nanoplastics will carry different charges and functional groups, thereby altering their toxicological effects. To evaluate the potential impact of aging of nanoplastics on the mammalian reproductive system, we exposed C57BL/6 male mice to a dose of 5 mg/kg/d polystyrene nanoparticles (PS-NPs) with different functional groups (unmodified, carboxyl functionalized and amino functionalized) for 45 days for this study. The results suggest that PS-NPs with different functional groups triggered oxidative stress, a decreased in the testis index, disruption of the outer wall of the seminiferous tubules, reduction in the number of spermatogonia cells and sperm counts, and an increased in sperm malformations. We performed GO and KEGG enrichment analysis on the differentially expressed proteins, and found they were mainly enriched in protein transport, RNA splicing and mTOR signaling. We confirmed that the PI3K-AKT-mTOR pathway is over activated, which may lead to reduction of spermatogonia stem cells by over differentiation. Strikingly, PS-NPs with functional group modifications are more toxic than those of unmodified polystyrene, and that PS-NPs with positively charged amino modifications are the most toxic. This study provides a new understanding for correctly evaluating the toxicological effects of plastic aging, and of the mechanism responsible for the reproductive toxicity caused by nanoplastics.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Mice , Male , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Water Pollutants, Chemical/toxicity , Semen , Nanoparticles/toxicity , Nanoparticles/metabolism , Genitalia, Male/metabolism , TOR Serine-Threonine Kinases , Mammals/metabolism
19.
Sci Total Environ ; 919: 170739, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340854

ABSTRACT

Nanoplastics (NPs) are unavoidable hazardous materials that result from the human production and use of plastics. While there is evidence that NPs can bioaccumulate in the brain, no enough research regarding the pathways by which NPs reach the brain was conducted, and it is also urgently needed to evaluate the health threat to the nervous system. Here, we observed accumulation of polystyrene nanoplastics (PS-NPs) with different surface modifications (PS, PS-COOH, and PS-NH2) in mouse brains. Further studies showed that PS-NPs disrupted the tight junctions between endothelial cells and transport into endothelial cells via the endocytosis and macropinocytosis pathways. Additionally, NPs exposure induced a series of alternations in behavioral tests, including anxiety- and depression-like changes and impaired social interaction performance. Further results identified that NPs could be internalized into neurons and localized in the mitochondria, bringing about mitochondrial dysfunction and a concurrent decline of ATP production, which might be associated with abnormal animal behaviors. The findings provide novel insights into the neurotoxicity of NPs and provide a basis for the formulation of policy on plastic production and usage by relevant government agencies.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Humans , Animals , Mice , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics , Depression/chemically induced , Endothelial Cells/metabolism , Water Pollutants, Chemical/toxicity , Anxiety/chemically induced , Nanoparticles/toxicity , Nanoparticles/metabolism , Neurons/metabolism , Plastics
20.
Adv Sci (Weinh) ; 11(17): e2309271, 2024 May.
Article in English | MEDLINE | ID: mdl-38368258

ABSTRACT

Well-defined nanostructures are crucial for precisely understanding nano-bio interactions. However, nanoparticles (NPs) fabricated through conventional synthesis approaches often lack poor controllability and reproducibility. Herein, a synthetic biology-based strategy is introduced to fabricate uniformly reproducible protein-based NPs, achieving precise control over heterogeneous components of the NPs. Specifically, a ferritin assembly toolbox system is developed that enables intracellular assembly of ferritin subunits/variants in Escherichia coli. Using this strategy, a proof-of-concept study is provided to explore the interplay between ligand density of NPs and their tumor targets/penetration. Various ferritin hybrid nanocages (FHn) containing human ferritin heavy chains (FH) and light chains are accurately assembled, leveraging their intrinsic binding with tumor cells and prolonged circulation time in blood, respectively. Further studies reveal that tumor cell uptake is FH density-dependent through active binding with transferrin receptor 1, whereas in vivo tumor accumulation and tissue penetration are found to be correlated to heterogeneous assembly of FHn and vascular permeability of tumors. Densities of 3.7 FH/100 nm2 on the nanoparticle surface exhibit the highest degree of tumor accumulation and penetration, particularly in tumors with high permeability compared to those with low permeability. This study underscores the significance of nanoparticle heterogeneity in determining particle fate in biological systems.


Subject(s)
Ferritins , Nanoparticles , Animals , Humans , Mice , Cell Line, Tumor , Disease Models, Animal , Ferritins/metabolism , Ferritins/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Nanostructures/chemistry , Neoplasms/metabolism , Female , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...