Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
PLoS One ; 19(6): e0303938, 2024.
Article in English | MEDLINE | ID: mdl-38843147

ABSTRACT

Oxford Nanopore Technologies (ONT) sequencing is a promising technology. We assessed the performance of the new ONT R10 flowcells and V14 rapid sequencing chemistry for Mtb whole genome sequencing of Mycobacterium tuberculosis (Mtb) DNA extracted from clinical primary liquid cultures (CPLCs). Using the recommended protocols for MinION Mk1C, R10.4.1 MinION flowcells, and the ONT Rapid Sequencing Kit V14 on six CPLC samples, we obtained a pooled library yield of 10.9 ng/µl, generated 1.94 Gb of sequenced bases and 214k reads after 48h in a first sequencing run. Only half (49%) of all generated reads met the Phred Quality score threshold (>8). To assess if the low data output and sequence quality were due to impurities present in DNA extracted directly from CPLCs, we added a pre-library preparation bead-clean-up step and included purified DNA obtained from an Mtb subculture as a control sample in a second sequencing run. The library yield for DNA extracted from four CPLCs and one Mtb subculture (control) was similar (10.0 ng/µl), 2.38 Gb of bases and 822k reads were produced. The quality was slightly better with 66% of the produced reads having a Phred Quality >8. A third run of DNA from six CPLCs with bead clean-up pre-processing produced a low library yield (±1 Gb of bases, 166k reads) of low quality (51% of reads with a Phred Quality score >8). A median depth of coverage above 10× was only achieved for five of 17 (29%) sequenced libraries. Compared to Illumina WGS of the same samples, accurate lineage predictions and full drug resistance profiles from the generated ONT data could not be determined by TBProfiler. Further optimization of the V14 ONT rapid sequencing chemistry and library preparation protocol is needed for clinical Mtb WGS applications.


Subject(s)
DNA, Bacterial , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Humans , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Nanopores , Nanopore Sequencing/methods , Genome, Bacterial , Whole Genome Sequencing/methods , Tuberculosis/microbiology , Tuberculosis/diagnosis , Gene Library
2.
PLoS One ; 19(6): e0304162, 2024.
Article in English | MEDLINE | ID: mdl-38843269

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (PTB) is the most common type of tuberculosis (TB). Rapid diagnosis of PTB can help in TB control. Although the use of molecular tests (such as the GeneXpert MTB/RIF) has improved the ability to rapidly diagnose PTB, there is still room for improvement. Nanopore sequencing is a novel means of rapid TB detection. The purpose of this study was to establish a systematic review and meta-analysis protocol for evaluating the accuracy of nanopore sequencing for the rapid diagnosis of PTB. METHODS: We completed this protocol according to the Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) statement and registered on the PROSPERO platform. We will screen studies related to nanopore sequencing for diagnosis of PTB by searching through PubMed, EMBASE, the Cochrane Library using English, and Wanfang database, CNKI (China National Knowledge Infrastructure) using Chinese. Eligible studies will be screened according to the inclusion and exclusion criteria established in the study protocol. We will evaluate the methodological quality of the individual included studies using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). We will use Stata (version 15.0) with the midas command and RevMan (version 5.3) for meta-analysis and forest plots and SROC curves generation. A p < 0.05 was treated as a statistically significant difference. When significant heterogeneity exists between studies, we will explore sources of heterogeneity through meta-regression analysis and subgroup analysis. CONCLUSION: To the best of our knowledge, this will be the first systematic review and meta-analysis of nanopore sequencing for the diagnosis of PTB. We hope that this study will find a new and effective tool for the early diagnosis of PTB. PROSPERO REGISTRATION NUMBER: CRD42023495593.


Subject(s)
Meta-Analysis as Topic , Nanopore Sequencing , Systematic Reviews as Topic , Tuberculosis, Pulmonary , Tuberculosis, Pulmonary/diagnosis , Humans , Nanopore Sequencing/methods , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification
3.
Microb Genom ; 10(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38833287

ABSTRACT

It is now possible to assemble near-perfect bacterial genomes using Oxford Nanopore Technologies (ONT) long reads, but short-read polishing is usually required for perfection. However, the effect of short-read depth on polishing performance is not well understood. Here, we introduce Pypolca (with default and careful parameters) and Polypolish v0.6.0 (with a new careful parameter). We then show that: (1) all polishers other than Pypolca-careful, Polypolish-default and Polypolish-careful commonly introduce false-positive errors at low read depth; (2) most of the benefit of short-read polishing occurs by 25× depth; (3) Polypolish-careful almost never introduces false-positive errors at any depth; and (4) Pypolca-careful is the single most effective polisher. Overall, we recommend the following polishing strategies: Polypolish-careful alone when depth is very low (<5×), Polypolish-careful and Pypolca-careful when depth is low (5-25×), and Polypolish-default and Pypolca-careful when depth is sufficient (>25×).


Subject(s)
Genome, Bacterial , Nanopores , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/classification , Software , Genomics/methods
4.
Open Biol ; 14(6): 230449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862018

ABSTRACT

Nanopore sequencing platforms combined with supervised machine learning (ML) have been effective at detecting base modifications in DNA such as 5-methylcytosine (5mC) and N6-methyladenine (6mA). These ML-based nanopore callers have typically been trained on data that span all modifications on all possible DNA [Formula: see text]-mer backgrounds-a complete training dataset. However, as nanopore technology is pushed to more and more epigenetic modifications, such complete training data will not be feasible to obtain. Nanopore calling has historically been performed with hidden Markov models (HMMs) that cannot make successful calls for [Formula: see text]-mer contexts not seen during training because of their independent emission distributions. However, deep neural networks (DNNs), which share parameters across contexts, are increasingly being used as callers, often outperforming their HMM cousins. It stands to reason that a DNN approach should be able to better generalize to unseen [Formula: see text]-mer contexts. Indeed, herein we demonstrate that a common DNN approach (DeepSignal) outperforms a common HMM approach (Nanopolish) in the incomplete data setting. Furthermore, we propose a novel hybrid HMM-DNN approach, amortized-HMM, that outperforms both the pure HMM and DNN approaches on 5mC calling when the training data are incomplete. This type of approach is expected to be useful for calling other base modifications such as 5-hydroxymethylcytosine and for the simultaneous calling of different modifications, settings in which complete training data are not likely to be available.


Subject(s)
5-Methylcytosine , DNA Methylation , Epigenesis, Genetic , Neural Networks, Computer , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Nanopore Sequencing/methods , Nanopores , Humans , Markov Chains , DNA/chemistry , DNA/genetics
5.
BMJ Open ; 14(6): e080904, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862231

ABSTRACT

OBJECTIVE: This study aimed to evaluate the efficiency of nanopore sequencing for the early diagnosis of tuberculous meningitis (TBM) using cerebrospinal fluid and compared it with acid-fast bacilli (AFB) smear, mycobacterial growth indicator tube culture and Xpert Mycobacterium tuberculosis (MTB)/rifampicin (RIF). DESIGN: Single-centre retrospective study. SETTING: The Tuberculosis Diagnosis and Treatment Center of Zhejiang Chinese and Western Medicine Integrated Hospital. PARTICIPANTS: We enrolled 64 adult patients with presumptive TBM admitted to our hospital from August 2021 to August 2023. METHODS: We calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of AFB smear, culture, Xpert MTB/RIF and nanopore sequencing to evaluate their diagnostic efficacy compared with a composite reference standard for TBM. RESULTS: Among these 64 patients, all tested negative for TBM by AFB smear. The sensitivity, specificity, PPV and NPV were 11.11%, 100%, 100% and 32.2% for culture, 13.33%, 100%, 100% and 2.76% for Xpert MTB/RIF, and 77.78%, 100%, 100% and 65.52% for nanopore sequencing, respectively. CONCLUSION: The diagnostic accuracy of the nanopore sequencing test was significantly higher than that of conventional testing methods used to detect TBM.


Subject(s)
Mycobacterium tuberculosis , Nanopore Sequencing , Sensitivity and Specificity , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/cerebrospinal fluid , Tuberculosis, Meningeal/microbiology , Retrospective Studies , Male , Female , Adult , China , Middle Aged , Nanopore Sequencing/methods , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Predictive Value of Tests , Aged , Young Adult , Cerebrospinal Fluid/microbiology
6.
Nat Commun ; 15(1): 4950, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862496

ABSTRACT

The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.


Subject(s)
Astronauts , Sequence Analysis, RNA , Space Flight , Humans , Sequence Analysis, RNA/methods , Transcriptome/genetics , Weightlessness , Male , Hematopoiesis/genetics , Nanopore Sequencing/methods , Adult , RNA/genetics , RNA/blood , Methylation , Middle Aged
7.
Ann Clin Microbiol Antimicrob ; 23(1): 51, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877520

ABSTRACT

PURPOSE: In this prospective study, the diagnosis accuracy of nanopore sequencing-based Mycobacterium tuberculosis (MTB) detection was determined through examining bronchoalveolar lavage fluid (BALF) samples from pulmonary tuberculosis (PTB) -suspected patients. Compared the diagnostic performance of nanopore sequencing, mycobacterial growth indicator tube (MGIT) culture and Xpert MTB/rifampin resistance (MTB/RIF) assays. METHODS: Specimens collected from suspected PTB cases across China from September 2021 to April 2022 were tested then assay diagnostic accuracy rates were compared. RESULTS: Among the 111 suspected PTB cases that were ultimately diagnosed as PTB, the diagnostic rate of nanopore sequencing was statistically significant different from other assays (P < 0.05). Fleiss' kappa values of 0.219 and 0.303 indicated fair consistency levels between MTB detection results obtained using nanopore sequencing versus other assays, respectively. Respective PTB diagnostic sensitivity rates of MGIT culture, Xpert MTB/RIF and nanopore sequencing of 36.11%, 40.28% and 83.33% indicated superior sensitivity of nanopore sequencing. Analysis of area under the curve (AUC), Youden's index and accuracy values and the negative predictive value (NPV) indicated superior MTB detection performance for nanopore sequencing (with Xpert MTB/RIF ranking second), while the PTB diagnostic accuracy rate of nanopore sequencing exceeded corresponding rates of the other methods. CONCLUSIONS: In comparison with MGIT culture and Xpert MTB/RIF assays, BALF's nanopore sequencing provided superior MTB detection sensitivity and thus is suitable for testing of sputum-scarce suspected PTB cases. However, negative results obtained using these assays should be confirmed based on additional evidence before ruling out a PTB diagnosis.


Subject(s)
Bronchoalveolar Lavage Fluid , Mycobacterium tuberculosis , Nanopore Sequencing , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Prospective Studies , China , Nanopore Sequencing/methods , Male , Female , Bronchoalveolar Lavage Fluid/microbiology , Adult , Middle Aged , Sensitivity and Specificity , Sputum/microbiology , Aged , Young Adult
9.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783575

ABSTRACT

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Subject(s)
DNA Methylation , Nanopore Sequencing , Promoter Regions, Genetic , Humans , Nanopore Sequencing/methods , Promoter Regions, Genetic/genetics , CpG Islands/genetics , Tumor Suppressor Proteins/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Brain Neoplasms/genetics , Female , Male , Glioblastoma/genetics , Aged
10.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38767624

ABSTRACT

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Subject(s)
Bombyx , Haplotypes , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Nucleopolyhedroviruses , Polymorphism, Single Nucleotide , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/classification , Nucleopolyhedroviruses/isolation & purification , Animals , Nanopore Sequencing/methods , Bombyx/virology , High-Throughput Nucleotide Sequencing/methods , Genome, Viral
11.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38713194

ABSTRACT

Whole-genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long- and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long-read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40×depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting.


Subject(s)
Genome, Bacterial , Nanopores , High-Throughput Nucleotide Sequencing/methods , Escherichia coli/genetics , Staphylococcus aureus/genetics , Sequence Analysis, DNA/methods , Pseudomonas aeruginosa/genetics , Nanopore Sequencing/methods , DNA, Bacterial/genetics , Klebsiella pneumoniae/genetics , Whole Genome Sequencing/methods , Bacteria/genetics , Bacteria/classification , Humans
12.
Arch Microbiol ; 206(6): 248, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713383

ABSTRACT

Describing the microbial community within the tumour has been a key aspect in understanding the pathophysiology of the tumour microenvironment. In head and neck cancer (HNC), most studies on tissue samples have only performed 16S rRNA short-read sequencing (SRS) on V3-V5 region. SRS is mostly limited to genus level identification. In this study, we compared full-length 16S rRNA long-read sequencing (FL-ONT) from Oxford Nanopore Technology (ONT) to V3-V4 Illumina SRS (V3V4-Illumina) in 26 HNC tumour tissues. Further validation was also performed using culture-based methods in 16 bacterial isolates obtained from 4 patients using MALDI-TOF MS. We observed similar alpha diversity indexes between FL-ONT and V3V4-Illumina. However, beta-diversity was significantly different between techniques (PERMANOVA - R2 = 0.131, p < 0.0001). At higher taxonomic levels (Phylum to Family), all metrics were more similar among sequencing techniques, while lower taxonomy displayed more discrepancies. At higher taxonomic levels, correlation in relative abundance from FL-ONT and V3V4-Illumina were higher, while this correlation decreased at lower levels. Finally, FL-ONT was able to identify more isolates at the species level that were identified using MALDI-TOF MS (75% vs. 18.8%). FL-ONT was able to identify lower taxonomic levels at a better resolution as compared to V3V4-Illumina 16S rRNA sequencing.


Subject(s)
Bacteria , Head and Neck Neoplasms , Nanopore Sequencing , RNA, Ribosomal, 16S , Humans , RNA, Ribosomal, 16S/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/microbiology , Nanopore Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Microbiota/genetics , High-Throughput Nucleotide Sequencing , Middle Aged , Sequence Analysis, DNA , Male , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Aged , Adult , Phylogeny
13.
Nucleic Acids Res ; 52(10): e47, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38709890

ABSTRACT

Sequence verification of plasmid DNA is critical for many cloning and molecular biology workflows. To leverage high-throughput sequencing, several methods have been developed that add a unique DNA barcode to individual samples prior to pooling and sequencing. However, these methods require an individual plasmid extraction and/or in vitro barcoding reaction for each sample processed, limiting throughput and adding cost. Here, we develop an arrayed in vivo plasmid barcoding platform that enables pooled plasmid extraction and library preparation for Oxford Nanopore sequencing. This method has a high accuracy and recovery rate, and greatly increases throughput and reduces cost relative to other plasmid barcoding methods or Sanger sequencing. We use in vivo barcoding to sequence verify >45 000 plasmids and show that the method can be used to transform error-containing dispersed plasmid pools into sequence-perfect arrays or well-balanced pools. In vivo barcoding does not require any specialized equipment beyond a low-overhead Oxford Nanopore sequencer, enabling most labs to flexibly process hundreds to thousands of plasmids in parallel.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing , Plasmids , Plasmids/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA/genetics , DNA Barcoding, Taxonomic/methods , Nanopore Sequencing/methods
14.
Genes Chromosomes Cancer ; 63(5): e23246, 2024 May.
Article in English | MEDLINE | ID: mdl-38747331

ABSTRACT

Dermatofibroma (DF) is a benign tumor that forms pedunculated lesions ranging in size from a few millimeters to 2 cm, usually affecting the extremities and trunks of young adults. Histopathologically, DF is characterized by the storiform proliferation of monomorphic fibroblast-like spindle cells. In addition to neoplastic cells, secondary elements such as foamy histiocytes, Touton-type giant cells, lymphoplasmacytes, and epidermal hyperplasia are characteristic histological features. Several histological variants, including atypical, cellular, aneurysmal, and lipidized variants, have been reported; cases with variant histologies are sometimes misdiagnosed as sarcomas. We present a case of metastasizing aneurysmal DF that was initially diagnosed as an angiosarcoma on biopsy. A 26-year-old woman was referred to our hospital with a gradually enlarging subcutaneous mass in her lower left leg. Positron emission tomography-computed tomography revealed high fluorodeoxyglucose uptake not only in the tumor but also in the left inguinal region. On biopsy, ERG and CD31-positive atypical spindle cells proliferated in slit-like spaces with extravasation, leading to the diagnosis of angiosarcoma. Histology of the wide-resection specimen was consistent with DF, and lymph node metastasis was also observed. Nanopore DNA sequencing detected CD63::PRKCD fusion and copy number gain, although CD63 was not included in the target region of adaptive sampling. This report highlights the importance of recognizing the unusual clinical, radiological, and pathological features of DF to avoid misdiagnosis, and the potential diagnostic utility of nanopore sequencer.


Subject(s)
Hemangiosarcoma , Histiocytoma, Benign Fibrous , Nanopore Sequencing , Oncogene Proteins, Fusion , Adult , Female , Humans , Hemangiosarcoma/genetics , Hemangiosarcoma/diagnosis , Hemangiosarcoma/pathology , Histiocytoma, Benign Fibrous/genetics , Histiocytoma, Benign Fibrous/diagnosis , Histiocytoma, Benign Fibrous/pathology , Nanopore Sequencing/methods , Oncogene Proteins, Fusion/analysis , Oncogene Proteins, Fusion/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Tetraspanin 30/genetics , Tetraspanin 30/metabolism
15.
Int J Biol Macromol ; 270(Pt 2): 132433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759861

ABSTRACT

Nanopore direct RNA sequencing provided a promising solution for unraveling the landscapes of modifications on single RNA molecules. Here, we proposed NanoMUD, a computational framework for predicting the RNA pseudouridine modification (Ψ) and its methylated analog N1-methylpseudouridine (m1Ψ), which have critical application in mRNA vaccination, at single-base and single-molecule resolution from direct RNA sequencing data. Electric signal features were fed into a bidirectional LSTM neural network to achieve improved accuracy and predictive capabilities. Motif-specific models (NNUNN, N = A, C, U or G) were trained based on features extracted from designed dataset and achieved superior performance on molecule-level modification prediction (Ψ models: min AUC = 0.86, max AUC = 0.99; m1Ψ models: min AUC = 0.87, max AUC = 0.99). We then aggregated read-level predictions for site stoichiometry estimation. Given the observed sequence-dependent bias in model performance, we trained regression models based on the distribution of modification probabilities for sites with known stoichiometry. The distribution-based site stoichiometry estimation method allows unbiased comparison between different contexts. To demonstrate the feasibility of our work, three case studies on both in vitro and in vivo transcribed RNAs were presented. NanoMUD will make a powerful tool to facilitate the research on modified therapeutic IVT RNAs and provides useful insight to the landscape and stoichiometry of pseudouridine and N1-pseudouridine on in vivo transcribed RNA species.


Subject(s)
Pseudouridine , Sequence Analysis, RNA , Pseudouridine/chemistry , Sequence Analysis, RNA/methods , RNA/chemistry , Nanopores , Neural Networks, Computer , Nanopore Sequencing/methods
16.
Appl Environ Microbiol ; 90(6): e0024324, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38767355

ABSTRACT

Fosmids and cosmids are vectors frequently used in functional metagenomic studies. With a large insert capacity (around 30 kb) they can encode dozens of cloned genes or in some cases, entire biochemical pathways. Fosmids with cloned inserts can be transferred to heterologous hosts and propagated to enable screening for new enzymes and metabolites. After screening, fosmids from clones with an activity of interest must be de novo sequenced, a critical step toward the identification of the gene(s) of interest. In this work, we present a new approach for rapid and high-throughput fosmid sequencing directly from Escherichia coli colonies without liquid culturing or fosmid purification. Our sample preparation involves fosmid amplification with phi29 polymerase and then direct nanopore sequencing using the Oxford Nanopore Technologies system. We also present a bioinformatics pipeline termed "phiXXer" that facilitates both de novo read assembly and vector trimming to generate a linear sequence of the fosmid insert. Finally, we demonstrate the accurate sequencing of 96 fosmids in a single run and validate the method using two fosmid libraries that contain cloned large insert (~30-40 kb) genomic or metagenomic DNA.IMPORTANCELarge-insert clone (fosmids or cosmids) sequencing is challenging and arguably the most limiting step of functional metagenomic screening workflows. Our study establishes a new method for high-throughput nanopore sequencing of fosmid clones directly from lysed Escherichia coli cells. It also describes a companion bioinformatic pipeline that enables de novo assembly of fosmid DNA insert sequences. The devised method widens the potential of functional metagenomic screening by providing a simple, high-throughput approach to fosmid clone sequencing that dramatically speeds the pace of discovery.


Subject(s)
Escherichia coli , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Escherichia coli/genetics , Nanopore Sequencing/methods , Metagenomics/methods , Cosmids/genetics , Sequence Analysis, DNA , Cloning, Molecular , Nanopores , DNA, Bacterial/genetics
17.
J Infect ; 88(6): 106164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692359

ABSTRACT

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Subject(s)
Influenza B virus , Influenza, Human , Nanopore Sequencing , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , United Kingdom/epidemiology , Nanopore Sequencing/methods , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Female , Male , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification
18.
Methods ; 228: 30-37, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768930

ABSTRACT

With the recent advanced direct RNA sequencing technique that proposed by the Oxford Nanopore Technologies, RNA modifications can be detected and profiled in a simple and straightforward manner. Majority nanopore-based modification studies were devoted to those popular types such as m6A and pseudouridine. To address current limitations on studying the crucial regulator, m1A modification, we conceived this study. We have developed an integrated computational workflow designed for the detection of m1A modifications from direct RNA sequencing data. This workflow comprises a feature extractor responsible for capturing signal characteristics (such as mean, standard deviations, and length of electric signals), a single molecule-level m1A predictor trained with features extracted from the IVT dataset using classical machine learning algorithms, a confident m1A site selector employing the binomial test to identify statistically significant m1A sites, and an m1A modification rate estimator. Our model achieved accurate molecule-level prediction (Average AUC = 0.9689) and reliable m1A site detection and quantification. To show the feasibility of our workflow, we conducted a study on in vivo transcribed human HEK293 cell line, and the results were carefully annotated and compared with other techniques (i.e., Illumina sequencing-based techniques). We believed that this tool will enabling a comprehensive understanding of the m1A modification and its functional mechanisms within cells and organisms.


Subject(s)
Adenosine , Machine Learning , RNA , Sequence Analysis, RNA , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , HEK293 Cells , Sequence Analysis, RNA/methods , Methylation , RNA/genetics , RNA/metabolism , Nanopore Sequencing/methods , Workflow , Algorithms , RNA Processing, Post-Transcriptional , RNA Methylation
19.
Methods Mol Biol ; 2807: 209-227, 2024.
Article in English | MEDLINE | ID: mdl-38743231

ABSTRACT

The post-transcriptional processing and chemical modification of HIV RNA are understudied aspects of HIV virology, primarily due to the limited ability to accurately map and quantify RNA modifications. Modification-specific antibodies or modification-sensitive endonucleases coupled with short-read RNA sequencing technologies have allowed for low-resolution or limited mapping of important regulatory modifications of HIV RNA such as N6-methyladenosine (m6A). However, a high-resolution map of where these sites occur on HIV transcripts is needed for detailed mechanistic understanding. This has recently become possible with new sequencing technologies. Here, we describe the direct RNA sequencing of HIV transcripts using an Oxford Nanopore Technologies sequencer and the use of this technique to map m6A at near single nucleotide resolution. This technology also provides the ability to identify splice variants with long RNA reads and thus, can provide high-resolution RNA modification maps that distinguish between overlapping splice variants. The protocols outlined here for m6A also provide a powerful paradigm for studying any other RNA modifications that can be detected on the nanopore platform.


Subject(s)
Adenosine , Nanopore Sequencing , RNA, Messenger , RNA, Viral , Nanopore Sequencing/methods , RNA, Viral/genetics , Methylation , Humans , Adenosine/analogs & derivatives , Adenosine/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , HIV-1/genetics , RNA Processing, Post-Transcriptional , High-Throughput Nucleotide Sequencing/methods , HIV Infections/virology , HIV Infections/genetics , HIV/genetics
20.
J Transl Med ; 22(1): 451, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741136

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a high-prevalence autosomal dominant neuromuscular disease characterized by significant clinical and genetic heterogeneity. Genetic diagnosis of FSHD remains a challenge because it cannot be detected by standard sequencing methods and requires a complex diagnosis workflow. METHODS: We developed a comprehensive genetic FSHD detection method based on Oxford Nanopore Technologies (ONT) whole-genome sequencing. Using a case-control design, we applied this procedure to 29 samples and compared the results with those from optical genome mapping (OGM), bisulfite sequencing (BSS), and whole-exome sequencing (WES). RESULTS: Using our ONT-based method, we identified 59 haplotypes (35 4qA and 24 4qB) among the 29 samples (including a mosaic sample), as well as the number of D4Z4 repeat units (RUs). The pathogenetic D4Z4 RU contraction identified by our ONT-based method showed 100% concordance with OGM results. The methylation levels of the most distal D4Z4 RU and the double homeobox 4 gene (DUX4) detected by ONT sequencing are highly consistent with the BSS results and showed excellent diagnostic efficiency. Additionally, our ONT-based method provided an independent methylation profile analysis of two permissive 4qA alleles, reflecting a more accurate scenario than traditional BSS. The ONT-based method detected 17 variations in three FSHD2-related genes from nine samples, showing 100% concordance with WES. CONCLUSIONS: Our ONT-based FSHD detection method is a comprehensive method for identifying pathogenetic D4Z4 RU contractions, methylation level alterations, allele-specific methylation of two 4qA haplotypes, and variations in FSHD2-related genes, which will all greatly improve genetic testing for FSHD.


Subject(s)
DNA Methylation , Muscular Dystrophy, Facioscapulohumeral , Whole Genome Sequencing , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Humans , DNA Methylation/genetics , Haplotypes/genetics , Male , Case-Control Studies , Homeodomain Proteins/genetics , Female , Nanopore Sequencing/methods , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...