Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45.959
Filter
1.
Water Sci Technol ; 89(10): 2783-2795, 2024 May.
Article in English | MEDLINE | ID: mdl-38822614

ABSTRACT

Photocatalytically active ceramic flat sheet membranes based on a nanostructured titanium dioxide (TiO2) coating were produced for photocatalytic water treatment. The nano-TiO2 layer was produced by a novel combination of magnetron sputtering of a thin titanium layer on silicon carbide (SiC) membranes, followed by electrochemical oxidation (anodization) and subsequent heat treatment (HT). Characterization by Raman spectra and field emission scanning electron microscopy proved the presence of a nanostructured anatase layer on the membranes. The influence of the titanium layer thickness on the TiO2 formation process and the photocatalytic properties were investigated using anodization curves, by using cyclovoltammetry measurements, and by quantifying the generated hydroxyl radicals (OH•) under UV-A irradiation in water. Promising photocatalytic activity and permeability of the nano-TiO2-coated membranes could be demonstrated. A titanium layer of at least 2 µm was necessary for significant photocatalytic effects. The membrane sample with a 10 µm Ti/TiO2 layer had the highest photocatalytic activity showing a formation rate of 1.26 × 10-6 mmol OH• s-1. Furthermore, the membranes were tested several times, and a decrease in radical formation was observed. Assuming that these can be attributed to adsorption processes of the reactants, initial experiments were carried out to reactivate the photocatalyzer.


Subject(s)
Carbon Compounds, Inorganic , Hydroxyl Radical , Membranes, Artificial , Silicon Compounds , Titanium , Water Purification , Titanium/chemistry , Hydroxyl Radical/chemistry , Water Purification/methods , Catalysis , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Electrochemical Techniques , Nanostructures/chemistry , Photochemical Processes
2.
Food Res Int ; 188: 114498, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823878

ABSTRACT

The emulsifying potential of a biocompatible ionic liquid (IL) to produce lipid-based nanosystems developed to enhance the bioaccessibility of cannabidiol (CBD) was investigated. The IL (cholinium oleate) was evaluated at concentrations of 1 % and 2 % to produce nanoemulsions (NE-IL) and nanostructured lipid carriers (NLC-IL) loaded with CBD. The IL concentration of 1 % demonstrated to be sufficient to produce both NE-IL and NLC-IL with excellent stability properties, entrapment efficiency superior to 99 %, and CBD retention rate of 100 % during the storage period evaluated (i.e. 28 days at 25 °C). The in vitro digestion evaluation demonstrated that the NLC-IL provided a higher stability to the CBD, while the NE-IL improved the CBD bioaccessibility, which was mainly related to the composition of the lipid matrices used to obtain each nanosystem. Finally, it was observed that the CBD cytotoxicity was reduced when the compound was entrapped into both nanosystems.


Subject(s)
Cannabidiol , Emulsifying Agents , Ionic Liquids , Cannabidiol/chemistry , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Emulsifying Agents/chemistry , Humans , Emulsions , Digestion , Nanostructures/chemistry , Cell Survival/drug effects , Biological Availability , Nanoparticles/chemistry , Drug Carriers/chemistry , Caco-2 Cells , Particle Size
3.
Mikrochim Acta ; 191(7): 373, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842697

ABSTRACT

The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.


Subject(s)
Surface Plasmon Resonance , Biosensing Techniques/methods , Gold/chemistry , Graphite/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Phosphorus/chemistry , Surface Plasmon Resonance/methods
4.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824555

ABSTRACT

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Subject(s)
Anti-Bacterial Agents , Dental Cements , Orthodontic Brackets , Silver , Tooth Remineralization , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Tooth Remineralization/methods , Dental Cements/pharmacology , Materials Testing , Nanostructures/therapeutic use , Streptococcus mutans/drug effects , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Glass/chemistry , Microscopy, Electron, Transmission , Ceramics , Humans , Composite Resins/pharmacology , Composite Resins/chemistry , Shear Strength , Hardness , Dental Bonding/methods , Dental Enamel/drug effects
5.
J Nanobiotechnology ; 22(1): 309, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825720

ABSTRACT

Gene therapy aims to modify or manipulate gene expression and change the biological characteristics of living cells to achieve the purpose of treating diseases. The safe, efficient, and stable expression of exogenous genes in cells is crucial for the success of gene therapy, which is closely related to the vectors used in gene therapy. Currently, gene therapy vectors are mainly divided into two categories: viral vectors and non-viral vectors. Viral vectors are widely used due to the advantages of persistent and stable expression, high transfection efficiency, but they also have certain issues such as infectivity, high immunological rejection, randomness of insertion mutation, carcinogenicity, and limited vector capacity. Non-viral vectors have the advantages of non-infectivity, controllable chemical structure, and unlimited vector capacity, but the transfection efficiency is low. With the rapid development of nanotechnology, the unique physicochemical properties of nanomaterials have attracted increasing attention in the field of drug and gene delivery. Among many nanomaterials, iron-based nanomaterials have attracted much attention due to their superior physicochemical properties, such as Fenton reaction, magnetic resonance imaging, magnetothermal therapy, photothermal therapy, gene delivery, magnetically-assisted drug delivery, cell and tissue targeting, and so on. In this paper, the research progress of iron-based nanomaterials in gene delivery and tumor gene therapy is reviewed, and the future application direction of iron-based nanomaterials is further prospected.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Iron , Neoplasms , Genetic Therapy/methods , Humans , Neoplasms/therapy , Animals , Iron/chemistry , Iron/metabolism , Nanostructures/chemistry , Genetic Vectors
6.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839340

ABSTRACT

A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.


Subject(s)
Receptors, AMPA , Synapses , Receptors, AMPA/metabolism , Receptors, AMPA/chemistry , Synapses/metabolism , Synapses/ultrastructure , Animals , Humans , Synaptic Transmission/physiology , Nanostructures/chemistry
7.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847600

ABSTRACT

Liquid-liquid phase separation in biology has recently been shown to play a major role in the spatial control of biomolecular components within the cell. However, as they are phase transitions, these processes also display nontrivial dynamics. A model phase-separating system of DNA nanostars provides unique access to nucleation physics in a biomolecular context, as phase separation is driven near room temperature by highly thermo-responsive DNA hybridization and at modest DNA concentrations. By measuring the delay time for phase-separated droplets to appear, we demonstrate that the dynamics of DNA nanostar phase separation reflect that of a metastable binary mixture of patchy particles. For sufficiently deep temperature quenches, droplets undergo spinodal decomposition and grow spontaneously, driven by Brownian motion and coalescence of phase-separated droplets, as confirmed by comparing experimental measurements to particle-based simulations. Near the coexistence boundary, droplet growth slows substantially, indicative of a nucleation process. The temperature dependence of droplet appearance times can be predicted by a classical nucleation picture with mean field exponents and demonstrates that a theory previously used to predict equilibrium phase diagrams can also distinguish spinodal and nucleation dynamical regimes. These dynamical principles are relevant to behaviors associated with liquid-liquid phase separating systems, such as their spatial patterning, reaction coupling, and biological function.


Subject(s)
DNA , Phase Transition , DNA/chemistry , Temperature , Models, Chemical , Nucleic Acid Hybridization , Nanostructures/chemistry
8.
Theranostics ; 14(8): 3193-3212, 2024.
Article in English | MEDLINE | ID: mdl-38855185

ABSTRACT

As a developing radiation treatment for tumors, neutron capture therapy (NCT) has less side effects and a higher efficacy than conventional radiation therapy. Drugs with specific isotopes are indispensable counterparts of NCT, as they are the indespensable part of the neutron capture reaction. Since the creation of the first and second generations of boron-containing reagents, NCT has significantly advanced. Notwithstanding, the extant NCT medications, predominantly comprised of small molecule boron medicines, have encountered challenges such monofunctionality, inadequate targeting of tumors, and hypermetabolism. There is an urgent need to promote the research and development of new types of NCT drugs. Bio-nanomaterials can be introduced into the realm of NCT, and nanotechnology can give conventional medications richer functionality and significant adaptability. This can complement the advantages of each other and is expected to develop more new drugs with less toxicity, low side effects, better tumor targeting, and high biocompatibility. In this review, we summarized the research progress of nano-drugs in NCT based on the different types and sources of isotopes used, and introduced the attempts and efforts made by relevant researchers in combining nanomaterials with NCT, hoping to provide pivotal references for promoting the development of the field of tumor radiotherapy.


Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Neoplasms/drug therapy , Animals , Neutron Capture Therapy/methods , Nanoparticles/chemistry , Nanostructures/therapeutic use , Nanostructures/chemistry , Nanotechnology/methods , Boron Neutron Capture Therapy/methods , Boron Compounds/therapeutic use , Boron Compounds/chemistry , Boron Compounds/pharmacology
9.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731608

ABSTRACT

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Subject(s)
Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
10.
Nat Commun ; 15(1): 3781, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710688

ABSTRACT

Taking inspiration from natural systems, in which molecular switches are ubiquitous in the biochemistry regulatory network, we aim to design and construct synthetic molecular switches driven by DNA-modifying enzymes, such as DNA polymerase and nicking endonuclease. The enzymatic treatments on our synthetic DNA constructs controllably switch ON or OFF the sticky end cohesion and in turn cascade to the structural association or disassociation. Here we showcase the concept in multiple DNA nanostructure systems with robust assembly/disassembly performance. The switch mechanisms are first illustrated in minimalist systems with a few DNA strands. Then the ON/OFF switches are realized in complex DNA lattice and origami systems with designated morphological changes responsive to the specific enzymatic treatments.


Subject(s)
DNA-Directed DNA Polymerase , DNA , Nanostructures , DNA/chemistry , DNA/metabolism , Nanostructures/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , Nucleic Acid Conformation , Deoxyribonuclease I/metabolism , Deoxyribonuclease I/chemistry , Nanotechnology/methods
11.
Sci Rep ; 14(1): 10406, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710736

ABSTRACT

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Nanostructures , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanostructures/chemistry , Escherichia coli/drug effects , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Cell Line, Tumor , Photochemical Processes , Photolysis
12.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718119

ABSTRACT

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Tumor Microenvironment , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Immunotherapy/methods , Animals , Mice , Humans , Catalysis , Cell Line, Tumor , Nanostructures/chemistry , Biomimetic Materials/chemistry , Administration, Oral , Titanium/chemistry , Biomimetics/methods , Lactic Acid/chemistry , Dendritic Cells/immunology , Dendritic Cells/metabolism , Barium Compounds
13.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740454

ABSTRACT

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Subject(s)
Antioxidants , Manganese Compounds , Oxides , Oxides/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Manganese Compounds/chemistry , Colorimetry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidation-Reduction , Nanostructures/chemistry , Catalysis
14.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38697643

ABSTRACT

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Subject(s)
Homeostasis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Homeostasis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Mice , Bortezomib/pharmacology , Bortezomib/chemistry , Liposomes/chemistry , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Hydroxides/chemistry , Hydroxides/pharmacology , Nanostructures/chemistry , Nanoparticles/chemistry
15.
J Phys Chem B ; 128(19): 4751-4758, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38709975

ABSTRACT

The surface patterning in natural systems has exhibited appreciable functional advantages for life activities, which serve as inspiration for the design of artificial counterparts to achieve functions such as directional liquid transport at the nanoscale. Here, we propose a patterned two-dimensional (2D) in-plane heterostructure with a triangle-shaped hexagonal boron nitride (hBN) track embedded in graphene nanosheets, which can achieve unidirectional and self-propelled transport of nanodroplets carrying various biomolecules such as DNA, RNA, and peptides. Our extensive MD simulations show that the wettability gradient on the patterned heterostructure can drive the motion of nanodroplet with an instantaneous acceleration, which also permits long-distance transport (>100 nm) at the microsecond time scale. The different behaviors of various types of biomolecules have been further studied systematically within the transporting nanodroplets. These findings suggest that these specially designed, patterned heterostructures have the potential for spontaneous, directional transport of important biomolecules, which might be useful in biosensing, drug delivery, and biomedical nanodevices.


Subject(s)
Boron Compounds , DNA , Graphite , Molecular Dynamics Simulation , Graphite/chemistry , DNA/chemistry , Boron Compounds/chemistry , Nanostructures/chemistry , RNA/chemistry , Peptides/chemistry , Wettability
16.
J Phys Chem Lett ; 15(19): 5295-5305, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722703

ABSTRACT

Coacervate microdroplets, a protocell model in exploring the origin of life, have gained significant attention. Clay minerals, catalysts during the origin of life, are crucial in the chemical evolution of small molecules into biopolymers. However, our understanding of the relationship between clay minerals and the formation and evolution of protocells on early Earth remains limited. In this work, the nanoclay montmorillonite nanosheet (MMT-Na) was employed to investigate its interaction with coacervate microdroplets formed by oligolysine (K10) and adenine nucleoside triphosphate (ATP). As an anionic component, MMT-Na was noted to promote the formation of coacervate microdroplets. Furthermore, the efficiency of ssDNA enrichment and the degree of ssDNA hybridization within these microdroplets were significantly improved. By combining inorganic nanoclay with organic biopolymers, our work provides an efficient way to enrich genetic biomolecules in the primitive Earth environment and builds a nanoclay-based coacervate microdroplets, shedding new light on life's origin and protocell evolution.


Subject(s)
Artificial Cells , Bentonite , Artificial Cells/chemistry , Bentonite/chemistry , DNA, Single-Stranded/chemistry , Clay/chemistry , Adenosine Triphosphate/chemistry , Nanostructures/chemistry , Origin of Life , Nucleic Acid Hybridization
17.
Bioconjug Chem ; 35(5): 582-592, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701361

ABSTRACT

Antibody-drug conjugates, nanoparticles, and liposomes have been used for anticancer drug delivery. The success of targeted killing of cancer cells relies heavily on the selectivity of the drug delivery systems. In most systems, antibodies or their fragments were used as targeting ligands. In this study, we have investigated the potential for protein-based octomeric chemically self-assembled nanorings (CSANs) to be used for anticancer drug delivery. The CSANs are composed of a DHFR-DHFR fusion protein incorporating an EGFR-targeting fibronectin and the anticancer drug MMAE conjugated through a C-terminal farnesyl azide. The anti-EGFR-MMAE CSANs were shown to undergo rapid internalization and have potent cytotoxicity to cancer cells across a 9000-fold difference in EGFR expression. In addition, anti-EGFR-MMAE CSANs were shown to induce immunological cell death. Thus, multivalent and modular CSANs are a potential alternative anticancer drug delivery platform with the capability of targeting tumor cells with heterogeneous antigen expression while activating the anticancer immune response.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , ErbB Receptors , Immunogenic Cell Death , Humans , Immunogenic Cell Death/drug effects , ErbB Receptors/metabolism , ErbB Receptors/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Nanostructures/chemistry , Nanoparticles/chemistry
18.
J Nanobiotechnology ; 22(1): 243, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735927

ABSTRACT

Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Hepatocellular , Liver Neoplasms , Nanostructures , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Humans , Aptamers, Nucleotide/chemistry , Nanostructures/chemistry , Nanostructures/therapeutic use , Animals , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
19.
J Nanobiotechnology ; 22(1): 242, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735936

ABSTRACT

BACKGROUND: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS: We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION: Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.


Subject(s)
Autophagy , Granulosa Cells , Nanostructures , Ovary , Titanium , Animals , Female , Autophagy/drug effects , Titanium/toxicity , Titanium/chemistry , Titanium/pharmacology , Mice , Ovary/drug effects , Ovary/metabolism , Nanostructures/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism
20.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772662

ABSTRACT

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Indoles/chemistry , Catalysis , Limit of Detection , Nanostructures/chemistry , Nanocomposites/chemistry , Imidazoles , Polymers , Zeolites
SELECTION OF CITATIONS
SEARCH DETAIL
...