Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Pharmacol ; 61 Suppl 2: S70-S88, 2021 08.
Article in English | MEDLINE | ID: mdl-34396552

ABSTRACT

Opioids were the most common drug class resulting in overdose deaths in the United States in 2019. Widespread clinical use of prescription opioids for moderate to severe pain contributed to the ongoing opioid epidemic with the subsequent emergence of fentanyl-laced heroin. More potent analogues of fentanyl and structurally diverse opioid receptor agonists such as AH-7921 and MT-45 are fueling an increasingly diverse illicit opioid supply. Overdose from synthetic opioids with high binding affinities may not respond to a typical naloxone dose, thereby rendering autoinjectors less effective, requiring higher antagonist doses or resulting in a confusing clinical picture for health care providers. Nonscheduled opioid drugs such as loperamide and dextromethorphan are associated with dependence and risk of overdose as easier access makes them attractive to opioid users. Despite a common opioid-mediated pathway, several opioids present with unique pharmacodynamic properties leading to acute toxicity and dependence development. Pharmacokinetic considerations involve half-life of the parent opioid and its metabolites as well as resulting toxicity, as is established for tramadol, codeine, and oxycodone. Pharmacokinetic considerations, toxicities, and treatment approaches for notable opioids are reviewed.


Subject(s)
Narcotic-Related Disorders/physiopathology , Narcotics/pharmacology , Analgesics, Opioid/pharmacology , Analgesics, Opioid/toxicity , Dose-Response Relationship, Drug , Drug Overdose/epidemiology , Half-Life , Humans , Illicit Drugs/pharmacology , Illicit Drugs/toxicity , Narcotics/pharmacokinetics , Narcotics/toxicity , Prescription Drug Misuse/adverse effects , Receptors, Opioid/agonists
2.
Addict Biol ; 26(6): e13048, 2021 11.
Article in English | MEDLINE | ID: mdl-33973711

ABSTRACT

The process through which early memories are transferred to the cerebral cortex to form long-term memories is referred to as memory consolidation, and the basolateral amygdala (BLA) is an important brain region involved in this process. Although functional connections between the BLA and multiple brain regions are critical for the consolidation of withdrawal memory, whether the projection from the BLA to the anterior cingulate cortex (ACC) is involved in the formation or consolidation of withdrawal memory remains unclear. In this paper, we used a chemical genetic method to specifically label the BLA-ACC projection in a combined morphine withdrawal and conditioned place aversion (CPA) animal model. We found that (1) the inhibition of the BLA-ACC projection during conditioning had no effects on the formation of early withdrawal memory; (2) the inhibition of the BLA-ACC projection had no effects on the retrieval of either early or long-term withdrawal memory; and (3) the persistent inhibition of the BLA-ACC projection after early withdrawal memory formation could inhibit the formation of long-term withdrawal memory and decrease Arc protein expression in the ACC. These results suggested that the persistent activation of the BLA-ACC projection after the formation of early withdrawal memory facilitates the formation of long-term withdrawal memory by increasing the plasticity of ACC neurons.


Subject(s)
Basolateral Nuclear Complex/drug effects , Gyrus Cinguli/drug effects , Memory Consolidation/drug effects , Morphine/pharmacology , Narcotic-Related Disorders/physiopathology , Animals , Gyrus Cinguli/metabolism , Male , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL
3.
Addict Biol ; 26(6): e13025, 2021 11.
Article in English | MEDLINE | ID: mdl-33609013

ABSTRACT

Oxycodone is one of the most commonly used analgesics in the clinic. However, long-term use can contribute to drug dependence. Accumulating evidence of changes in DNA methylation after opioid relapse has provided insight into mechanisms underlying drug-associated memory. The neuropeptide oxytocin is reported to be a potential treatment for addiction. The present study sought to identify changes in global and synaptic gene methylation after cue-induced reinstatement of oxycodone conditioned place preference (CPP) and the effect of oxytocin. We analyzed hippocampal mRNA of synaptic genes and also synaptic density in response to oxycodone CPP. We determined the mRNA levels of DNA methyltransferases (Dnmts) and ten-eleven translocations (Tets), observed global 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels, and measured DNA methylation status of four synaptic genes implicated in learning and memory (Arc, Dlg1, Dlg4, and Syn1). Both synaptic density and the transcription of 15 hippocampal synaptic genes significantly increased following cue-induced reinstatement of oxycodone CPP. Oxycodone relapse was also related to markedly decreased 5-mC levels and decreased transcription of Dnmt1, Dnmt3a, and Dnmt3b; in contrast, 5-hmC levels and the transcription of Tet1 and Tet3 were increased. Oxycodone exposure induced DNA hypomethylation at the exons of the Arc, Dlg1, Dlg4, and Syn1 genes. Intracerebroventricular (ICV) administration of oxytocin (2.5 µg/µl) specifically blocked oxycodone relapse, possibly by inhibition of Arc, Dlg1, Dlg4, and Syn1 hypomethylation in oxycodone-treated rats. Together, these data indicate the occurrence of epigenetic changes in the hippocampus following oxycodone relapse and the potential role of oxytocin in oxycodone addiction.


Subject(s)
DNA Methylation/drug effects , Hippocampus/drug effects , Narcotic-Related Disorders/physiopathology , Oxycodone/pharmacology , Oxytocin/pharmacology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Conditioning, Classical/drug effects , Cues , DNA Methylation/physiology , Dose-Response Relationship, Drug , Learning/drug effects , Male , Memory/drug effects , Narcotic-Related Disorders/genetics , RNA, Messenger/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...