Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.739
Filter
1.
Front Immunol ; 15: 1356298, 2024.
Article in English | MEDLINE | ID: mdl-38690264

ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP) is predominantly a type 2 inflammatory disease associated with type 2 (T2) cell responses and epithelial barrier, mucociliary, and olfactory dysfunction. The inflammatory cytokines interleukin (IL)-4, IL-13, and IL-5 are key mediators driving and perpetuating type 2 inflammation. The inflammatory responses driven by these cytokines include the recruitment and activation of eosinophils, basophils, mast cells, goblet cells, M2 macrophages, and B cells. The activation of these immune cells results in a range of pathologic effects including immunoglobulin E production, an increase in the number of smooth muscle cells within the nasal mucosa and a reduction in their contractility, increased deposition of fibrinogen, mucus hyperproduction, and local edema. The cytokine-driven structural changes include nasal polyp formation and nasal epithelial tissue remodeling, which perpetuate barrier dysfunction. Type 2 inflammation may also alter the availability or function of olfactory sensory neurons contributing to loss of sense of smell. Targeting these key cytokine pathways has emerged as an effective approach for the treatment of type 2 inflammatory airway diseases, and a number of biologic agents are now available or in development for CRSwNP. In this review, we provide an overview of the inflammatory pathways involved in CRSwNP and describe how targeting key drivers of type 2 inflammation is an effective therapeutic option for patients.


Subject(s)
Interleukin-13 , Interleukin-4 , Nasal Polyps , Rhinitis , Sinusitis , Humans , Sinusitis/immunology , Sinusitis/metabolism , Nasal Polyps/immunology , Nasal Polyps/metabolism , Rhinitis/immunology , Rhinitis/metabolism , Chronic Disease , Interleukin-13/metabolism , Interleukin-13/immunology , Interleukin-4/metabolism , Interleukin-4/immunology , Signal Transduction , Inflammation/immunology , Inflammation/metabolism , Animals , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Rhinosinusitis
2.
Front Immunol ; 15: 1380846, 2024.
Article in English | MEDLINE | ID: mdl-38756779

ABSTRACT

Background: Although oxidative stress is involved in the pathophysiological process of chronic rhinosinusitis with nasal polyps (CRSwNP), the specific underlying mechanism is still unclear. Whether antioxidant therapy can treat CRSwNP needs further investigation. Methods: Immunohistochemistry, immunofluorescence, western blotting and quantitative polymerase chain reaction (qPCR) analyses were performed to detect the distribution and expression of oxidants and antioxidants in nasal polyp tissues. qPCR revealed correlations between oxidase, antioxidant enzymes and inflammatory cytokine levels in CRSwNP patients. Human nasal epithelial cells (HNEpCs) and primary macrophages were cultured to track the cellular origin of oxidative stress in nasal polyps(NPs) and to determine whether crocin can reduce cellular inflammation by increasing the cellular antioxidant capacity. Results: The expression of NOS2, NOX1, HO-1 and SOD2 was increased in nasal epithelial cells and macrophages derived from nasal polyp tissue. Oxidase levels were positively correlated with those of inflammatory cytokines (IL-5 and IL-6). Conversely, the levels of antioxidant enzymes were negatively correlated with those of IL-13 and IFN-γ. Crocin inhibited M1 and M2 macrophage polarization as well as the expression of NOS2 and NOX1 and improved the antioxidant capacity of M2 macrophages. Moreover, crocin enhanced the ability of antioxidants to reduce inflammation via the KEAP1/NRF2/HO-1 pathway in HNEpCs treated with SEB or LPS. Additionally, we observed the antioxidant and anti-inflammatory effects of crocin in nasal explants. Conclusion: Oxidative stress plays an important role in the development of CRSwNP by promoting various types of inflammation. The oxidative stress of nasal polyps comes from epithelial cells and macrophages. Antioxidant therapy may be a promising strategy for treating CRSwNP.


Subject(s)
Antioxidants , Nasal Polyps , Oxidative Stress , Rhinitis , Sinusitis , Humans , Nasal Polyps/metabolism , Nasal Polyps/immunology , Sinusitis/metabolism , Sinusitis/immunology , Rhinitis/metabolism , Rhinitis/immunology , Chronic Disease , Antioxidants/metabolism , Female , Male , Adult , Middle Aged , Oxidants/metabolism , Macrophages/metabolism , Macrophages/immunology , Cytokines/metabolism , Nasal Mucosa/metabolism , Nasal Mucosa/immunology , Cells, Cultured , Rhinosinusitis
3.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38758698

ABSTRACT

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Subject(s)
Common Cold , Immunity, Innate , Interferons , Nasal Mucosa , SARS-CoV-2 , Signal Transduction , Humans , Nasal Mucosa/virology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interferons/metabolism , Interferons/immunology , Common Cold/immunology , Common Cold/virology , Signal Transduction/immunology , SARS-CoV-2/immunology , Virus Replication , Rhinovirus/immunology , Coronavirus 229E, Human/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Coronavirus NL63, Human/immunology
4.
Innate Immun ; 30(2-4): 55-65, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38725177

ABSTRACT

Th2 polarization is essential for the pathogenesis of allergic rhinitis (AR). Th2 polarization's mechanism requires further understanding. IL-4 is the primary cytokine involved in Th2 response. Fibroblasts play a role in immune regulation. This study aims to elucidate the role of nasal mucosal fibroblast-derived IL-4 in the induction of Th2 responses. Nasal mucosal tissues were obtained from surgically removed samples from patients with nasal polyps, whether with or without AR. Fibroblasts were isolated from the tissues by flow cytometry cell sorting, and analyzed by RNA sequencing (RNAseq). The data from RNAseq showed that nasal fibroblasts expressed genes of GATA3, CD80, CD83, CD86, STAT6, IL2, IL4, IL5, IL6, IL13 and costimulatory factor. The data were verified by RT-qPCR. The level of gene activity was positively correlated with those of AR-related cytokines present in nasal secretions. Nasal fibroblasts release IL-4 upon activation. Nasal fibroblasts had the ability to transform naive CD4+ T cells into Th2 cells, which can be eliminated by inhibiting IL-4 receptor or CD28 in CD4+ T cells. To sum up, nasal mucosal fibroblasts produce IL-4, which can induce Th2 cell development. The data implicate that nasal fibroblasts are involved in the pathogenesis of nasal allergy.


Subject(s)
Fibroblasts , Interleukin-4 , Nasal Mucosa , Rhinitis, Allergic , Th2 Cells , Humans , Th2 Cells/immunology , Fibroblasts/immunology , Fibroblasts/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interleukin-4/metabolism , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Cells, Cultured , Female , Male , Adult , Middle Aged , Nasal Polyps/immunology , Lymphocyte Activation , Cell Differentiation
5.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674011

ABSTRACT

The primary entry point of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nasal mucosa, where viral-induced inflammation occurs. When the immune response fails against SARS-CoV-2, understanding the altered response becomes crucial. This study aimed to compare SARS-CoV-2 immunological responses in the olfactory and respiratory mucosa by focusing on epithelia and nerves. Between 2020 and 2022, we obtained post mortem tissues from the olfactory cleft from 10 patients with histologically intact olfactory epithelia (OE) who died with or from COVID-19, along with four age-matched controls. These tissues were subjected to immunohistochemical reactions using antibodies against T cell antigens CD3, CD8, CD68, and SARS spike protein for viral evidence. Deceased patients with COVID-19 exhibited peripheral lymphopenia accompanied by a local decrease in CD3+ cells in the OE. However, SARS-CoV-2 spike protein was sparsely detectable in the OE. With regard to the involvement of nerve fibers, the present analysis suggested that SARS-CoV-2 did not significantly alter the immune response in olfactory or trigeminal fibers. On the other hand, SARS spike protein was detectable in both nerves. In summary, the post mortem investigation demonstrated a decreased T cell response in patients with COVID-19 and signs of SARS-CoV-2 presence in olfactory and trigeminal fibers.


Subject(s)
COVID-19 , Nasal Mucosa , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Male , Female , SARS-CoV-2/immunology , Aged , Middle Aged , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/pathology , Nasal Mucosa/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Aged, 80 and over , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Olfactory Mucosa/immunology , Olfactory Mucosa/virology , Olfactory Mucosa/pathology , Olfactory Mucosa/metabolism , Adult , Autopsy
6.
Int Immunopharmacol ; 132: 112003, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603858

ABSTRACT

Allergic rhinitis (AR) is a common allergic disease. Cytochrome P450, family 2, subfamily e, polypeptide 1 (Cyp2e1) is a member of the cytochrome P450 family of enzymes, while its role in AR is still unveiled. In AR mice, T cell-specific overexpression of Cyp2e1 relieved the AR symptoms. Overexpressed-Cyp2e1 restrained the infiltration of eosinophils and mast cells in the nasal mucosa of mice, and the inflammatory cells in nasal lavage fluid (NALF). Cyp2e1 overexpressed mice exhibited decreased goblet cell hyperplasia and mucus secretion as well as decreased MUC5AC expression in nasal mucosa. The epithelial permeability and integrity of nasal mucosa were improved upon Cyp2e1 overexpression in AR mice, as evidenced by decreased fluorescein isothiocyanate-dextran 4 content in serum, increased expression of IL-25, IL-33, and TSLP in NALF, and increased expression of ZO-1 and occluding in nasal mucosa. Cyp2e1 inhibited Th2 immune response by decreasing the expression and secretion of IL-4, IL-5, and IL-13 as well as the expression of GATA-3 in NALF or nasal mucosa. We proved that Cyp2e1 inhibited the differentiation of naïve CD4+ T cells toward the Th2 subtype, which was regulated by MAFB by binding to Cyp2e1 promoter to activate its transcription. Overall, these results show the potential role of Cyp2e1 in alleviating AR symptoms by restraining CD4+ T cells to Th2 cell differentiation. Our findings provide further insight into the AR mechanism.


Subject(s)
Cell Differentiation , Cytochrome P-450 CYP2E1 , Nasal Mucosa , Ovalbumin , Rhinitis, Allergic , Th2 Cells , Animals , Humans , Mice , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/genetics , Cytokines/metabolism , Disease Models, Animal , Lymphocyte Activation , Mice, Inbred BALB C , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Ovalbumin/immunology , Rhinitis, Allergic/immunology , Th2 Cells/immunology
7.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648490

ABSTRACT

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Subject(s)
Administration, Intranasal , Antiviral Agents , Neomycin , SARS-CoV-2 , Animals , Neomycin/pharmacology , Neomycin/administration & dosage , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Respiratory Tract Infections/prevention & control , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/drug effects , Disease Models, Animal , COVID-19 Drug Treatment , Mesocricetus , Female , Influenza A virus/drug effects , Influenza A virus/immunology
8.
Clin Immunol ; 263: 110221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636891

ABSTRACT

Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.


Subject(s)
Biofilms , Rhinitis , Sinusitis , Staphylococcal Infections , Staphylococcus aureus , Humans , Sinusitis/immunology , Sinusitis/microbiology , Staphylococcus aureus/immunology , Rhinitis/immunology , Rhinitis/microbiology , Chronic Disease , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Male , Female , Middle Aged , Nasal Polyps/immunology , Nasal Polyps/microbiology , Adult , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , B-Lymphocytes/immunology , Severity of Illness Index , Aged , Rhinosinusitis
9.
Lab Chip ; 24(10): 2658-2668, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38660972

ABSTRACT

Mucosal antibodies in the upper respiratory tract are the earliest and most critical responders to prevent respiratory infections, providing an indication for the rapid evaluation of immune protection. Here, we report a microfluidic particle counter that directly visualizes mucosal antibody levels in nasal mucus. The mucosal anti-SARS-CoV-2 spike receptor binding domain (RBD) antibodies in nasal secretions first react with magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that are surface-modified to form a "MMPs-anti-spike RBD IgG-PMPs" complex when RBD is present. After magnetic separation and loading into the microfluidic particle counter, the free PMPs, which are reduced with increasing anti-spike RBD IgG antibody levels, are trapped by a microfluidic particle dam and accumulate in the trapping channel. A sensitive mode [limit of detection (LOD): 14.0 ng mL-1; sample-to-answer time: 70 min] and an equipment-free rapid mode (LOD: 37.4 ng mL-1; sample-to-answer time: 20 min) were achieved. Eighty-seven nasal secretion (NS) samples from vaccinees were analyzed using our microfluidic particle counter, and the results closely resemble those of the gold-standard enzyme-linked immunosorbent assay (ELISA). The analysis shows that higher antibody levels were found in convalescent volunteers compared to noninfected volunteers. Together, we demonstrate a rapid kit that directly indicates immune status, which can guide vaccine strategy for individuals and the government.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/analysis , COVID-19/immunology , COVID-19/diagnosis , COVID-19/virology , COVID-19/prevention & control , Immunoglobulin G/immunology , Immunoglobulin G/blood , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Nasal Mucosa/immunology
11.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687064

ABSTRACT

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Subject(s)
COVID-19 , Coinfection , Epithelial Cells , Interferon Type I , Interleukin-17 , SARS-CoV-2 , Humans , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , COVID-19/immunology , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Interferon Type I/metabolism , Interferon Type I/immunology , Male , SARS-CoV-2/immunology , Middle Aged , Female , Epithelial Cells/immunology , Epithelial Cells/microbiology , Adult , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Aged , Nasopharynx/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Mycoses/immunology
12.
ACS Nano ; 18(17): 11200-11216, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38620102

ABSTRACT

Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.


Subject(s)
Administration, Intranasal , Hydrogels , Immunity, Mucosal , Nasal Mucosa , Animals , Hydrogels/chemistry , Mice , Immunity, Mucosal/drug effects , Nasal Mucosa/immunology , Mice, Inbred BALB C , Female , Humans , Mice, Inbred C57BL
13.
Allergy ; 79(5): 1146-1165, 2024 May.
Article in English | MEDLINE | ID: mdl-38372149

ABSTRACT

Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.


Subject(s)
Nasal Mucosa , Rhinitis , Sinusitis , Tight Junctions , Humans , Sinusitis/therapy , Sinusitis/immunology , Sinusitis/etiology , Tight Junctions/metabolism , Rhinitis/therapy , Rhinitis/etiology , Chronic Disease , Nasal Mucosa/metabolism , Nasal Mucosa/immunology , Animals , Disease Susceptibility , Rhinosinusitis
14.
Int Arch Allergy Immunol ; 185(5): 466-479, 2024.
Article in English | MEDLINE | ID: mdl-38354721

ABSTRACT

INTRODUCTION: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common chronic inflammatory disease of the nose characterized by barrier disruption and environmental susceptibility, and the deletion of ZNF365 may be a factor inducing these manifestations. However, there is no study on the mechanism of action between CRSwNP and ZNF365. Therefore, this study focuses on the effect of the zinc finger protein ZNF365 on the proliferation of nasal mucosal epithelial cells and their defense against Staphylococcus aureus (S. aureus). METHODS: Immunohistochemistry and Western blot were applied to verify the changes of ZNF365 expression in nasal polyp tissues and control tissues, as well as in primary epithelial cells. ZNF365 was knocked down in human nasal mucosa epithelial cell line (HNEpc), and the proliferation, migration, and transdifferentiation of epithelium were observed by immunofluorescence, QPCR, CCK8, and cell scratch assay. The changes of mesenchymal markers and TLR4-MAPK-NF-κB pathway were also observed after the addition of S. aureus. RESULTS: ZNF365 expression was reduced in NP tissues and primary nasal mucosal epithelial cells compared to controls. Knockdown of ZNF365 in HNEpc resulted in decreased proliferation and migration ability of epithelial cells and abnormal epithelial differentiation (decreased expression of tight junction proteins). S. aureus stimulation further inhibited epithelial cell proliferation and migration, while elevated markers of epithelial-mesenchymal transition and inflammatory responses occurred. CONCLUSION: ZNF365 is instrumental in maintaining the proliferative capacity of nasal mucosal epithelial cells and defending against the invasion of S. aureus. The findings suggest that ZNF365 may participate in the development of CRSwNP.


Subject(s)
Cell Proliferation , Nasal Mucosa , Staphylococcus aureus , Humans , Cell Line , Cell Movement/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/immunology , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Nasal Mucosa/metabolism , Nasal Polyps/immunology , Nasal Polyps/microbiology , Rhinitis/immunology , Rhinitis/microbiology , Signal Transduction , Sinusitis/immunology , Sinusitis/microbiology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology
15.
J Allergy Clin Immunol ; 153(5): 1306-1318, 2024 May.
Article in English | MEDLINE | ID: mdl-38181841

ABSTRACT

BACKGROUND: Airway obstruction caused by viscous mucus is an important pathophysiologic characteristic of persistent inflammation, which can result in organ damage. OBJECTIVE: We investigated the hypothesis that the biophysical characteristics of accumulating granulocytes affect the clinical properties of mucus. METHODS: Surgically acquired nasal mucus samples from patients with eosinophilic chronic rhinosinusitis and neutrophil-dominant, noneosinophilic chronic rhinosinusitis were evaluated in terms of computed tomography density, viscosity, water content, wettability, and protein composition. Isolated human eosinophils and neutrophils were stimulated to induce the formation of extracellular traps, followed by the formation of aggregates. The biophysical properties of the aggregated cells were also examined. RESULTS: Mucus from patients with eosinophilic chronic rhinosinusitis had significantly higher computed tomography density, viscosity, dry weight, and hydrophobicity compared to mucus from patients with noneosinophilic chronic rhinosinusitis. The levels of eosinophil-specific proteins in mucus correlated with its physical properties. Eosinophil and neutrophil aggregates showed physical and pathologic characteristics resembling those of mucus. Cotreatment with deoxyribonuclease and heparin, which slenderizes the structure of eosinophil extracellular traps, efficiently induced reductions in the viscosity and hydrophobicity of both eosinophil aggregates and eosinophilic mucus. CONCLUSIONS: The present study elucidated the pathogenesis of mucus stasis in infiltrated granulocyte aggregates from a novel perspective. These findings may contribute to the development of treatment strategies for eosinophilic airway diseases.


Subject(s)
Eosinophils , Extracellular Traps , Mucus , Neutrophils , Rhinitis , Sinusitis , Humans , Sinusitis/immunology , Sinusitis/pathology , Rhinitis/immunology , Rhinitis/pathology , Eosinophils/immunology , Chronic Disease , Neutrophils/immunology , Mucus/metabolism , Male , Female , Adult , Extracellular Traps/immunology , Extracellular Traps/metabolism , Middle Aged , Viscosity , Cell Aggregation , Aged , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Rhinosinusitis
16.
J Allergy Clin Immunol ; 153(5): 1206-1214, 2024 May.
Article in English | MEDLINE | ID: mdl-38295881

ABSTRACT

Chronic rhinosinusitis (CRS) is a common chronic nasal cavity and sinus disease affecting a growing number of individuals worldwide. Recent advances have shifted our understanding of CRS pathophysiology from a physical obstruction model of ventilation and drainage to a mucosal concept that recognizes the complexities of mucosal immunologic variations and cellular aberrations. A growing number of studies have demonstrated the alteration of the epithelial barrier during inflammatory states. Therefore, the current review has focused on the crucial role of epithelial cells within this mucosal framework in CRS, detailing the perturbed epithelial homeostasis, impaired epithelial cell barrier, dysregulated epithelial cell repair processes, and enhanced interactions between epithelial cells and immune cells. Notably, the utilization of novel technologies, such as single-cell transcriptomics, has revealed the novel functions of epithelial barriers, such as inflammatory memory and neuroendocrine functions. Therefore, this review also emphasizes the importance of epithelial inflammatory memory and the necessity of further investigations into neuroendocrine epithelial cells and neurogenic inflammation in CRS. We conclude by contemplating the prospective benefits of epithelial cell-oriented biological treatments, which are currently under investigation in rigorous randomized, double-blind clinical trials in patients with CRS with nasal polyps.


Subject(s)
Nasal Mucosa , Rhinitis , Sinusitis , Humans , Sinusitis/immunology , Sinusitis/pathology , Chronic Disease , Rhinitis/immunology , Rhinitis/pathology , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Epithelial Cells/immunology , Animals , Rhinosinusitis
17.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294251

ABSTRACT

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Subject(s)
Adaptive Immunity , Epithelial Cells , Ferrets , Immunity, Innate , Influenza A virus , Influenza B virus , Interferons , Nasal Mucosa , Animals , Child , Humans , Antibodies, Viral/analysis , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Ferrets/immunology , Ferrets/virology , Influenza A virus/classification , Influenza A virus/growth & development , Influenza A virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/classification , Influenza B virus/growth & development , Influenza B virus/immunology , Influenza Vaccines , Influenza, Human/virology , Interferons/immunology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/virology , Thymic Stromal Lymphopoietin/genetics , Thymic Stromal Lymphopoietin/immunology , Cells, Cultured
18.
Am J Respir Crit Care Med ; 209(11): 1338-1350, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38259174

ABSTRACT

Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Homeostasis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/physiopathology , Child , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Male , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Aminophenols/therapeutic use , Aminophenols/pharmacology , Quinolones/therapeutic use , Quinolones/pharmacology , Indoles/therapeutic use , Indoles/pharmacology , Drug Combinations , Quinolines/therapeutic use , Quinolines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrroles/therapeutic use , Pyrroles/pharmacology , Nasal Mucosa/immunology , Pyridines/therapeutic use , Pyridines/pharmacology
19.
Front Immunol ; 13: 941608, 2022.
Article in English | MEDLINE | ID: mdl-35990621

ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP) is caused by prolonged inflammation of the paranasal sinus mucosa. The epithelial to mesenchymal transition (EMT) is involved in the occurrence and development of CRSwNP. The T-cell immunoglobulin domain and the mucin domain 4 (TIM-4) is closely related to chronic inflammation, but its mechanism in CRSwNP is poorly understood. In our study, we found that TIM-4 was increased in the sinonasal mucosa of CRSwNP patients and, especially, in macrophages. TIM-4 was positively correlated with α-SMA but negatively correlated with E-cadherin in CRS. Moreover, we confirmed that TIM-4 was positively correlated with the clinical parameters of the Lund-Mackay and Lund-Kennedy scores. In the NP mouse model, administration of TIM-4 neutralizing antibody significantly reduced the polypoid lesions and inhibited the EMT process. TIM-4 activation by stimulating with tissue extracts of CRSwNP led to a significant increase of TGF-ß1 expression in macrophages in vitro. Furthermore, coculture of macrophages and human nasal epithelial cells (hNECs) results suggested that the overexpression of TIM-4 in macrophages made a contribution to the EMT process in hNECs. Mechanistically, TIM-4 upregulated TGF-ß1 expression in macrophages via the ROS/p38 MAPK/Egr-1 pathway. In conclusion, TIM-4 contributes to the EMT process and aggravates the development of CRSwNP by facilitating the production of TGF-ß1 in macrophages. Inhibition of TIM-4 expression suppresses nasal polyp formation, which might provide a new therapeutic approach for CRSwNP.


Subject(s)
Epithelial-Mesenchymal Transition , Macrophages , Membrane Proteins , Nasal Mucosa , Nasal Polyps , Transforming Growth Factor beta1 , Animals , Chronic Disease , Epithelial Cells/immunology , Epithelial-Mesenchymal Transition/immunology , Humans , Inflammation/immunology , Macrophages/immunology , Membrane Proteins/immunology , Mice , Nasal Mucosa/immunology , Nasal Polyps/immunology , Paranasal Sinuses/immunology , Rhinitis/immunology , Sinusitis/immunology , Transforming Growth Factor beta1/immunology
20.
Dis Markers ; 2022: 4416637, 2022.
Article in English | MEDLINE | ID: mdl-35299869

ABSTRACT

Atrophic rhinitis (AR) is a chronic disease that causes severe structural changes to the nasal mucosa leading to squamous epithelial metaplasia. However, treatment regarding AR remains a major challenge. We used network pharmacology and molecular docking methods to explore the potential mechanisms of the Yiqi Qingre Ziyin method to modulate neuropeptides in the treatment of AR. The active ingredients of the Yiqi Qingre Ziyin method and their targets of action were obtained from the Traditional Chinese Medicine Systematic Pharmacology Database Analysis Platform (TCMSP). Disease targets for AR were obtained from four databases: GeneCards, PharmGKB, DrugBank, and Online Mendelian Inheritance in Man (OMIM). A total of 59 active ingredients, 39 potential targets, and 76 relevant neuropeptides were obtained after deduplication. We constructed target interaction networks with the STRING database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the 14 potential target proteins. We used Cytoscape software to construct the "drug-active ingredient-potential target" and "ingredient-target-pathway" networks of the Yiqi Qingre Ziyin method for treating AR. Molecular docking results suggest that dipeptidyl peptidase 4 (DPP4), opioid receptor gene d1 (OPRD1), and opioid receptor m1 (OPRM1) are key targets for the Yiqi Qingre Ziyin method. Therefore, this study proposed a potential mechanism for the treatment of AR by affecting the expression of neuropeptide-related genes (including DPP4, OPRD1, and OPRM1), which may potentially improve the immune microenvironment of the nasal mucosa.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Molecular Docking Simulation , Neuropeptides/metabolism , Rhinitis, Atrophic/drug therapy , Computer Simulation , Databases, Genetic , Dipeptidyl Peptidase 4 , Epithelial Cells/pathology , Gene Ontology , Humans , Metaplasia/pathology , Nasal Mucosa/immunology , Nasal Mucosa/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...