Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.473
Filter
1.
Commun Biol ; 7(1): 693, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844781

ABSTRACT

Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.


Subject(s)
Cell Proliferation , Cyclic GMP , Forkhead Box Protein O3 , Natriuretic Peptide, C-Type , Pericytes , Signal Transduction , Humans , Pericytes/metabolism , Pericytes/pathology , Natriuretic Peptide, C-Type/metabolism , Cyclic GMP/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Adult , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Cells, Cultured
2.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38752331

ABSTRACT

C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.


Subject(s)
Biphenyl Compounds , Bone Development , Mice, Inbred C57BL , Natriuretic Peptide, C-Type , Neprilysin , Animals , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/genetics , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/metabolism , Bone Development/drug effects , Mice , Biphenyl Compounds/pharmacology , Mice, Knockout , Aminobutyrates/pharmacology , Signal Transduction/drug effects , Male , Valsartan/pharmacology , Growth Plate/drug effects , Growth Plate/metabolism , Drug Combinations , Tetrazoles/pharmacology
3.
Clin Pharmacokinet ; 63(5): 707-719, 2024 May.
Article in English | MEDLINE | ID: mdl-38649657

ABSTRACT

BACKGROUND AND OBJECTIVE: Vosoritide is a recently approved therapy for achondroplasia, the most common form of disproportionate short stature, that has been shown to be well tolerated and effective in increasing linear growth. This study aimed to develop a population pharmacokinetic (PPK) model to characterize pharmacokinetics (PK) of vosoritide and establish a weight-band dosing regimen. METHODS: A PPK model was developed using data from five clinical trials in children with achondroplasia (aged 0.95-15 years) who received daily per-kg doses of vosoritide. The model was used to simulate expected exposures in children with a refined weight-band dosing regimen. Simulated exposure was compared with the observed exposure from the pivotal clinical trial to evaluate appropriateness of the weight-band dosing regimen. RESULTS: A one-compartment model with a change-point first-order absorption and first-order elimination accurately described PK of vosoritide in children with achondroplasia. Body weight was found to be a predictor of vosoritide's clearance and volume of distribution. Additionally, it was observed that dosing solution concentration and duration of treatment influenced bioavailability. The weight-band dosing regimen resulted in simulated exposures that were within the range demonstrated to be well tolerated and effective in the pivotal clinical trial and showed improved consistency in drug exposure across the achondroplasia population. CONCLUSIONS: The weight-band dosing regimen reduced the number of recommended dose levels by body weight and is expected to simplify dosing for children with achondroplasia and their caregivers. CLINICAL TRIAL REGISTRATION: NCT02055157, NCT02724228, NCT03197766, NCT03424018, and NCT03583697.


Subject(s)
Achondroplasia , Body Weight , Models, Biological , Humans , Achondroplasia/drug therapy , Child , Adolescent , Female , Child, Preschool , Male , Infant , Natriuretic Peptide, C-Type/pharmacokinetics , Natriuretic Peptide, C-Type/administration & dosage , Natriuretic Peptide, C-Type/analogs & derivatives , Dose-Response Relationship, Drug
4.
Biomed Pharmacother ; 174: 116535, 2024 May.
Article in English | MEDLINE | ID: mdl-38581923

ABSTRACT

Studies have shown that Sacubitril/valsartan (Sac/Val) can reduce myocardial inflammation in myocarditis mice, in addition to its the recommended treatment of heart failure. However, the underlying mechanisms of Sac/Val in myocarditis remain unclear. C-type natriuretic peptide (CNP), one of the targeting natriuretic peptides of Sac/Val, was recently reported to exert cardio-protective and anti-inflammatory effects in cardiovascular systems. Here, we focused on circulating levels of CNP in patients with acute myocarditis (AMC) and whether Sac/Val modulates inflammation by targeting CNP in experimental autoimmune myocarditis (EAM) mice as well as LPS-induced RAW 264.7 cells and bone marrow derived macrophages (BMDMs) models. Circulating CNP levels were higher in AMC patients compared to healthy controls, and these levels positively correlated with the elevated inflammatory cytokines IL-6 and monocyte count. In EAM mice, Sac/Val alleviated myocardial inflammation while augmenting circulating CNP levels rather than BNP and ANP, accompanied by reduction in intracardial M1 macrophage infiltration and expression of inflammatory cytokines IL-1ß, TNF-α, and IL-6. Furthermore, Sac/Val inhibited CNP degradation and directly blunted M1 macrophage polarization in LPS-induced RAW 264.7 cells and BMDMs. Mechanistically, the effects might be mediated by the NPR-C/cAMP/JNK/c-Jun signaling pathway apart from NPR-B/cGMP/NF-κB pathway. In conclusion, Sac/Val exerts a protective effect in myocarditis by increasing CNP concentration and inhibiting M1 macrophages polarization.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Drug Combinations , Macrophages , Myocarditis , Natriuretic Peptide, C-Type , Valsartan , Animals , Mice , Myocarditis/drug therapy , Myocarditis/metabolism , Myocarditis/pathology , Macrophages/drug effects , Macrophages/metabolism , Aminobutyrates/pharmacology , Valsartan/pharmacology , RAW 264.7 Cells , Male , Humans , Biphenyl Compounds/pharmacology , Natriuretic Peptide, C-Type/pharmacology , Tetrazoles/pharmacology , Acute Disease , Disease Models, Animal , Female , Cytokines/metabolism , Cytokines/blood , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Cell Polarity/drug effects
5.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38433340

ABSTRACT

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Subject(s)
Sharks , Animals , Sharks/metabolism , Salt Gland/metabolism , Chlorides/metabolism , Chlorides/pharmacology , Dogfish/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology , Sodium/metabolism , Sodium/pharmacology , Potassium/metabolism , Potassium/pharmacology
6.
Open Vet J ; 14(2): 674-682, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38549573

ABSTRACT

Background: Fertility plays a great role in animal reproduction since high-quality semen improves sheep industry reproduction. The current worldwide data revealed the close relation of C-type natriuretic peptide (CNP) to the reproductive function of rams. Aims: Evaluation of the effect of CNP on cooled sperms using traditional and molecular assays. Methods: Totally, of 20 testicular samples were collected, processed to obtain the semen samples, and divided into two parts; one was treated with a suitable dose of CNP, and the other served as a control. Sperm samples of both groups were cooled for 3 days and tested at 0, 24, 48, and 72 hours. Results: The findings revealed that the suitable dose of CNP-treated sperms was 0.01 × 10-13. Values of individual motility, live sperms, and sperm concentration were reduced significantly in CNP-24h, CNP-48h, and CNP-72h when compared to control; however, abnormal sperms were increased in both control and CNP groups at 24, 48, and 72 hours when compared to values of 0 hour. Concerning turbidmetric analysis, a significant reduction in values of lag time was observed in CNP when compared to control at all times of cooling intervals. In both CNP and control groups, motility index was decreased at 24, 48, and 72 hours when compared to 0 hour. For velocity, significant increases were shown in CNP compared with control at all cooling intervals. However, values of both groups were increased significantly at 24, 48, and 72 hours times when compared to 0 hour. Fraction of rapidly moving sperm of CNP was elevated at 0 hour and decreased at 24, 48, and 72 hours when compared to control. Expression of the hNPR-B gene was reduced gradually in sperms of CNP and control groups at times of cooling intervals. Conclusion: To the best of our knowledge, this first Iraqi study targets the effect of CNP on epididymal sperms of rams. However, changes that occur after excessive CNP exposure remain unclear, and the toxicological profile of CNP requires furthermore supplements.


Subject(s)
Natriuretic Peptide, C-Type , Semen , Male , Sheep , Animals , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology , Iraq , Semen/metabolism , Spermatozoa/metabolism , Semen Analysis/veterinary , Sheep, Domestic
7.
Adv Ther ; 41(1): 198-214, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882884

ABSTRACT

INTRODUCTION: Vosoritide is the first precision medical therapy approved to increase growth velocity in children with achondroplasia. Sharing early prescribing experiences across different regions could provide a framework for developing practical guidance for the real-world use of vosoritide. METHODS: Two meetings were held to gather insight and early experience from experts in Europe, the Middle East, and the USA. The group comprised geneticists, pediatric endocrinologists, pediatricians, and orthopedic surgeons. Current practices and considerations for vosoritide were discussed, including administration practicalities, assessments, and how to manage expectations. RESULTS: A crucial step in the management of achondroplasia is to determine if adequate multidisciplinary support is in place. Training for families is essential, including practical information on administration of vosoritide, and how to recognize and manage injection-site reactions. Advocated techniques include establishing a routine, empowering patients by allowing them to choose injection sites, and managing pain. Patients may discontinue vosoritide if they cannot tolerate daily injections or are invited to participate in a clinical trial. Clinicians in Europe and the Middle East emphasized the importance of assessing adherence to daily injections, as non-adherence may impact response and reimbursement. Protocols for monitoring patients receiving vosoritide may be influenced by regional differences in reimbursement and healthcare systems. Core assessments may include pubertal staging, anthropometry, radiography to confirm open physes, the review of adverse events, and discussion of concomitant or new medications-but timing of these assessments may also differ regionally and vary across institutions. Patients and families should be informed that response to vosoritide can vary in both magnitude and timing. Keeping families informed regarding vosoritide clinical trial data is encouraged. CONCLUSION: The early real-world experience with vosoritide is generally positive. Sharing these insights is important to increase understanding of the practicalities of treatment with vosoritide in the clinical setting.


Subject(s)
Achondroplasia , Natriuretic Peptide, C-Type , Child , Humans , Natriuretic Peptide, C-Type/therapeutic use , Delivery of Health Care , Pain Management , Achondroplasia/drug therapy
8.
Eur J Pediatr ; 183(3): 1011-1019, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863846

ABSTRACT

Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia).  Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.


Subject(s)
Abnormalities, Multiple , Achondroplasia , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Noonan Syndrome , Humans , Noonan Syndrome/drug therapy , Noonan Syndrome/genetics , Natriuretic Peptide, C-Type , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases
9.
Lancet Child Adolesc Health ; 8(1): 40-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984383

ABSTRACT

BACKGROUND: Vosoritide is a recombinant C-type natriuretic peptide analogue that increases annualised growth velocity in children with achondroplasia aged 5-18 years. We aimed to assess the safety and efficacy of vosoritide in infants and children younger than 5 years. METHODS: This double-blind, randomised, placebo-controlled, phase 2 trial was done in 16 hospitals across Australia, Japan, the UK, and the USA. Children younger than 60 months with a clinical diagnosis of achondroplasia confirmed by genetic testing and who had completed a baseline growth study or observation period were enrolled into one of three sequential cohorts based on age at screening: 24-59 months (cohort 1); 6-23 months (cohort 2); and 0-5 months (cohort 3). Each cohort included sentinels who received vosoritide to determine appropriate daily drug dose, with the remainder randomly assigned (1:1) within each age stratum (except in Japan, where participants were randomly assigned within each cohort) to receive daily subcutaneous injections of vosoritide (30·0 µg/kg for infants aged 0-23 months; 15·0 µg/kg for children aged 24-59 months) or placebo for 52 weeks. Participants, caregivers, investigators, and the sponsor were masked to treatment assignment. The first primary outcome was safety and tolerability, assessed in all participants who received at least one study dose. The second primary outcome was change in height Z score at 52 weeks from baseline, analysed in all randomly assigned participants. This trial is registered with EudraCT, 2016-003826-18, and ClinicalTrials.gov, NCT03583697. FINDINGS: Between May 13, 2018, and March 1, 2021, 75 participants were recruited (37 [49%] females). 11 were assigned as sentinels, whereas 32 were randomly assigned to receive vosoritide and 32 placebo. Two participants discontinued treatment and the study: one in the vosoritide group (death) and one in the placebo group (withdrawal). Adverse events occurred in all 75 (100%) participants (annual rate 204·5 adverse events per patient in the vosoritide group and 73·6 per patient in the placebo group), most of which were transient injection-site reactions and injection-site erythema. Serious adverse events occurred in three (7%) participants in the vosoritide group (decreased oxygen saturation, respiratory syncytial virus bronchiolitis and sudden infant death syndrome, and pneumonia) and six (19%) participants in the placebo group (petit mal epilepsy, autism, gastroenteritis, vomiting and parainfluenza virus infection, respiratory distress, and skull fracture and otitis media). The least-squares mean difference for change from baseline in height Z score between the vosoritide and placebo groups was 0·25 (95% CI -0·02 to 0·53). INTERPRETATION: Children with achondroplasia aged 3-59 months receiving vosoritide for 52 weeks had a mild adverse event profile and gain in the change in height Z score from baseline. FUNDING: BioMarin Pharmaceutical.


Subject(s)
Achondroplasia , Gastroenteritis , Female , Humans , Infant , Male , Achondroplasia/drug therapy , Double-Blind Method , Natriuretic Peptide, C-Type/therapeutic use , Child, Preschool
10.
Circ Arrhythm Electrophysiol ; 16(11): e012199, 2023 11.
Article in English | MEDLINE | ID: mdl-37933567

ABSTRACT

BACKGROUND: ß-AR (ß-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced ß-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS: Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS: Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the ß-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS: NPR-B protects against AF by preventing enhanced atrial responses to ß-adrenergic receptor agonists.


Subject(s)
Atrial Fibrillation , Humans , Mice , Animals , Atrial Fibrillation/prevention & control , Atrial Fibrillation/metabolism , Isoproterenol/pharmacology , Natriuretic Peptide, C-Type/pharmacology , Heart Atria , Myocytes, Cardiac/metabolism
11.
PLoS One ; 18(11): e0293636, 2023.
Article in English | MEDLINE | ID: mdl-37917630

ABSTRACT

Natriuretic peptides (NP), including atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), play essential roles in regulating blood pressure, cardiovascular homeostasis, and systemic metabolism. One of the major metabolic effects of NP is manifested by their capacity to stimulate lipolysis and the thermogenesis gene program in adipocytes, however, in skeletal muscle their effects on metabolism and muscle function are not as well understood. There are three NP receptors (NPR): NPRA, NPRB, and NPRC, and all three NPR genes are expressed in skeletal muscle and C2C12 myocytes. In C2C12 myocytes treatment with either ANP, BNP, or CNP evokes the cGMP signaling pathway. Since NPRC functions as a clearance receptor and the amount of NPRC in a cell type determines the signaling strength of NPs, we generated a genetic model with Nprc gene deletion in skeletal muscle and tested whether enhancing NP signaling by preventing its clearance in skeletal muscle would improve exercise performance in mice. Under sedentary conditions, Nprc skeletal muscle knockout (MKO) mice showed comparable exercise performance to their floxed littermates in terms of maximal running velocity and total endurance running time. Eight weeks of voluntary running-wheel training in a young cohort significantly increased exercise performance, but no significant differences were observed in MKO compared with floxed control mice. Furthermore, 6-weeks of treadmill training in a relatively aged cohort also increased exercise performance compared with their baseline values, but again there were no differences between genotypes. In summary, our study suggests that NP signaling is potentially important in skeletal myocytes but its function in skeletal muscle in vivo needs to be further studied in additional physiological conditions or with new genetic mouse models.


Subject(s)
Natriuretic Peptides , Receptors, Atrial Natriuretic Factor , Humans , Mice , Animals , Aged , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Natriuretic Peptides/metabolism , Receptors, Peptide , Natriuretic Peptide, C-Type/genetics , Mice, Knockout , Vasodilator Agents , Muscle, Skeletal/metabolism , Atrial Natriuretic Factor/pharmacology , Natriuretic Peptide, Brain
12.
FASEB J ; 37(12): e23295, 2023 12.
Article in English | MEDLINE | ID: mdl-37984844

ABSTRACT

C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.


Subject(s)
DNA, Mitochondrial , In Vitro Oocyte Maturation Techniques , Female , Humans , DNA, Mitochondrial/genetics , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/pharmacology , Oocytes/physiology , Meiosis , Natriuretic Peptides/genetics , Vasodilator Agents
13.
Elife ; 122023 10 20.
Article in English | MEDLINE | ID: mdl-37860954

ABSTRACT

The overall oocyte quality declines with aging, and this effect is strongly associated with a higher reactive oxygen species (ROS) level and the resultant oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized physiological meiotic inhibitor that has been successfully used to improve immature oocyte quality during in vitro maturation. However, the underlying roles of CNP in maternally aged oocytes have not been reported. Here, we found that the age-related reduction in the serum CNP concentration was highly correlated with decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth and ovulation in aged mice and enhanced meiotic competency and fertilization ability. Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved by CNP treatment, as assessed by spindle/chromosome morphology and redistribution of organelles (mitochondria, the endoplasmic reticulum, cortical granules, and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed that the beneficial effect of CNP on aged oocytes was mediated by restoration of mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP reversed the defective phenotypes in aged oocytes by alleviating oxidative damage and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and inhibit Parkin recruitment. In summary, our results demonstrated that CNP supplementation constitutes an alternative therapeutic approach for advanced maternal age-related oocyte deterioration and may improve the overall success rates of clinically assisted reproduction in older women.


Subject(s)
In Vitro Oocyte Maturation Techniques , Natriuretic Peptide, C-Type , Animals , Female , Mice , Cumulus Cells/metabolism , In Vitro Oocyte Maturation Techniques/methods , Meiosis , Mitophagy , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/metabolism , Oocytes/metabolism , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
14.
Chem Biol Interact ; 385: 110749, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37802408

ABSTRACT

We aimed to investigate serum amino-terminal C-type natriuretic peptide (NT-proCNP) and its relationship with quantitative and qualitative HDL-parameters in patients with end-stage renal disease (ESRD) before, then 1 and 6 months after kidney transplantation (TX). Seventy patients (47 males, 23 females, mean age 51.7 ± 12.4 years) were enrolled in a prospective follow-up study. We examined serum creatinine, C-reactive protein, procalcitonin, fasting glucose and lipid parameters before, then 1 and 6 months after TX. High-density lipoprotein- (HDL)-associated paraoxonase-1 (PON1) paraoxonase and arylesterase activities were measured spectrophotometrically. Lipoprotein subfractions were determined by Lipoprint. NT-proCNP and oxidized low-density lipoprotein (oxLDL) levels were measured by ELISA. Mean NT-proCNP was 45.8 ± 21.9 pmol/L before renal transplantation and decreased markedly 1 month and 6 months after transplantation (5.3 ± 2.5 and 7.7 ± 4.9 pmol/L, respectively, P = 1 × 10-4). During the 6 months' follow-up, PON1 arylesterase, paraoxonase and salt-stimulated paraoxonase activities improved. NT-proCNP positively correlated with procalcitonin and creatinine and negatively with GFR, LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C). There was a negative correlation between serum NT-proCNP and PON1 arylesterase activity. According to the multiple regression analysis, the best predicting variables of NT-proCNP were serum procalcitonin, creatinine and PON1 arylesterase activity. NT-proCNP might be a novel link between HDL dysfunction and impaired vascular function in ESRD, but not after kidney transplantation. Further studies in larger populations are needed to clarify the exact role of NT-proCNP in the risk prediction for cardiovascular comorbidities and complications in ESRD.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Male , Female , Humans , Adult , Middle Aged , Natriuretic Peptide, C-Type , Lipoproteins, HDL , Follow-Up Studies , Prospective Studies , Procalcitonin , Aryldialkylphosphatase/metabolism , Creatinine , Kidney Failure, Chronic/surgery , Vasodilator Agents , Cholesterol
15.
Genes (Basel) ; 14(10)2023 09 28.
Article in English | MEDLINE | ID: mdl-37895234

ABSTRACT

In vitro embryo production depends on high-quality oocytes. Compared with in vivo matured oocytes, in vitro oocytes undergo precocious meiotic resumption, thus compromising oocyte quality. C-type natriuretic peptide (CNP) is a follicular factor maintaining meiotic arrest. Thus, CNP-pretreatment has been widely used to improve the in vitro maturation (IVM) of oocytes in many species. However, the efficacy of this strategy has remained unsatisfactory in porcine oocytes. Here, by determining the functional concentration and dynamics of CNP in inhibiting spontaneous meiotic resumption, we improved the current IVM system of porcine oocytes. Our results indicate that although the beneficial effect of the CNP pre-IVM strategy is common among species, the detailed method may be largely divergent among them and needs to be redesigned specifically for each one. Focusing on the overlooked role of cumulus cells surrounding the oocytes, we also explore the mechanisms relevant to their beneficial effect. In addition to oocytes per se, the enhanced anti-apoptotic and anti-oxidative gene expression in cumulus cells may contribute considerably to improved oocyte quality. These findings not only emphasize the importance of screening the technical parameters of the CNP pre-IVM strategy for specific species, but also highlight the critical supporting role of cumulus cells in this promising strategy.


Subject(s)
In Vitro Oocyte Maturation Techniques , Natriuretic Peptide, C-Type , Animals , Swine , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/metabolism , In Vitro Oocyte Maturation Techniques/methods , Meiosis , Oocytes/metabolism , Oxidative Stress , Apoptosis
16.
Anim Reprod Sci ; 257: 107327, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696223

ABSTRACT

This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.


Subject(s)
Melatonin , Animals , Cattle , Female , Melatonin/pharmacology , Melatonin/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Natriuretic Peptide, C-Type/pharmacology , Colforsin/pharmacology , Colforsin/metabolism , Oocytes/physiology , Cyclic AMP/metabolism , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Cumulus Cells
17.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629102

ABSTRACT

Human patients with mutations within NPPC or NPR2 genes (encoding C-type natriuretic peptide (CNP) and guanylyl cyclase-B (GC-B), respectively) display clinical signs associated with skeletal abnormalities, such as overgrowth or short stature. Mice with induced models of Nppc or Npr2 deletion display profound achondroplasia, dwarfism and early death. Recent pharmacological therapies to treat short stature are utilizing long-acting CNP analogues, but the effects of manipulating CNP expression during development remain unknown. Here, we use Danio rerio (zebrafish) as a model for vertebrate development, employing both pharmacological and reverse genetics approaches to alter expression of genes encoding CNP in zebrafish. Four orthologues of CNP were identified in zebrafish, and spatiotemporal expression profiling confirmed their presence during development. Bioinformatic analyses suggested that nppcl is the most likely the orthologue of mammalian CNP. Exogenous CNP treatment of developing zebrafish embryos resulted in impaired growth characteristics, such as body length, head width and eye diameter. This reduced growth was potentially caused by increased apoptosis following CNP treatment. Expression of endogenous nppcl was downregulated in these CNP-treated embryos, suggesting that negative feedback of the CNP system might influence growth during development. CRISPR knock-down of endogenous nppcl in developing zebrafish embryos also resulted in impaired growth characteristics. Collectively, these data suggest that CNP in zebrafish is crucial for normal embryonic development, specifically with regard to growth.


Subject(s)
Achondroplasia , Natriuretic Peptide, C-Type , Female , Pregnancy , Humans , Animals , Mice , Natriuretic Peptide, C-Type/genetics , Zebrafish/genetics , Growth Disorders , Mammals
18.
J Biol Chem ; 299(8): 105015, 2023 08.
Article in English | MEDLINE | ID: mdl-37414146

ABSTRACT

The initial formation of the follicular antrum (iFFA) serves as a dividing line between gonadotropin-independent and gonadotropin-dependent folliculogenesis, enabling the follicle to sensitively respond to gonadotropins for its further development. However, the mechanism underlying iFFA remains elusive. Herein, we reported that iFFA is characterized by enhanced fluid absorption, energy consumption, secretion, and proliferation and shares a regulatory mechanism with blastula cavity formation. By use of bioinformatics analysis, follicular culture, RNA interference, and other techniques, we further demonstrated that the tight junction, ion pumps, and aquaporins are essential for follicular fluid accumulation during iFFA, as a deficiency of any one of these negatively impacts fluid accumulation and antrum formation. The intraovarian mammalian target of rapamycin-C-type natriuretic peptide pathway, activated by follicle-stimulating hormone, initiated iFFA by activating tight junction, ion pumps, and aquaporins. Building on this, we promoted iFFA by transiently activating mammalian target of rapamycin in cultured follicles and significantly increased oocyte yield. These findings represent a significant advancement in iFFA research, further enhancing our understanding of folliculogenesis in mammals.


Subject(s)
Aquaporins , Tight Junctions , Animals , Female , Aquaporins/genetics , Follicle Stimulating Hormone , Gonadotropins , Ion Pumps , Mammals , TOR Serine-Threonine Kinases/genetics , Mice , Natriuretic Peptide, C-Type/metabolism
19.
Exp Physiol ; 108(9): 1172-1188, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493451

ABSTRACT

The role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude. This inotropic response was accompanied by a positive lusitropic response as demonstrated by reductions in time from peak contraction to 90% of relaxation and time from peak calcium transient to 90% of decay that paralleled increases in maximum contraction decay slope and maximum calcium decay slope. To establish translatability, CNP-induced changes in contractility were also assessed in rat ex vivo (isolated heart) and in vivo models. Here, the effects on force kinetics observed in ECTs mirrored those observed in both the ex vivo and in vivo model systems, whereas the increase in maximal force generation with CNP application was only detected in ECTs. In conclusion, CNP induces a positive inotropic and lusitropic response in ECTs, thus supporting an important role for CNP in the regulation of human cardiac function. The high degree of translatability between ECTs, ex vivo and in vivo models further supports a regulatory role for CNP and expands the current understanding of the translational value of human ECTs. NEW FINDINGS: What is the central question of this study? What are the acute responses to C-type natriuretic peptide (CNP) in human-engineered cardiac tissues (ECTs) on cardiac function and how well do they translate to matched concentrations in animal ex vivo and in vivo models? What is the main finding and its importance? Acute stimulation of ECTs with CNP induced positive lusitropic and inotropic effects on cardiac contractility, which closely reflected the changes observed in rat ex vivo and in vivo cardiac models. These findings support an important role for CNP in the regulation of human cardiac function and highlight the translational value of ECTs.


Subject(s)
Natriuretic Peptide, C-Type , Animals , Humans , Rats , Calcium , Myocardial Contraction/physiology , Myocytes, Cardiac , Natriuretic Peptide, C-Type/pharmacology
20.
Biomacromolecules ; 24(7): 3149-3158, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37344353

ABSTRACT

In a healthy heart, cells naturally secrete C-type natriuretic peptide (CNP), a cytokine that protects against myofibroblast differentiation of cardiac fibroblasts and extracellular matrix deposition leading to fibrosis. CNP availability during myocardial remodeling is important to prevent cardiac fibrosis, but CNP is limited after an injury because of the loss of cardiomyocytes and the activation of cardiac fibroblasts to myofibroblasts. We hypothesized that the sustained release of exogenous CNP from oligo-urethane nanoparticles (NPs) would reduce differentiation of human cardiac fibroblasts toward a myofibrogenic phenotype. Our work used a modified form of a degradable polar hydrophobic ionic (D-PHI) oligo-urethane, which has shown the ability to self-assemble into NPs for the delivery of peptide and oligonucleotide biomolecules. The CNP-loaded NPs (NPCNP) were characterized for a diameter of 129 ± 1.4 nm and a ζ potential of -46 ± 7.8 mV. Treatment of cardiac fibroblasts with NPCNP increased cyclic guanosine-monophosphate (cGMP) synthesis, confirming that exogenous CNP delivered via oligo-urethane NPs is bioactive and can induce downstream signaling that has been implicated in antagonizing transforming growth factor-ß1 (TGF-ß1)-induced myofibrogenic differentiation. It is also shown that treatment with NPCNP attenuated contraction of collagen gels by cardiac myofibroblasts stimulated with TGF-ß1. Coating with heparin on the NPCNP (HEP-NPCNP) exemplified an approach to extend the release of CNP from the NPs. Both HEP-NPCNP and NPCNP show minimal cell toxicity, studied up to 0.25 × 1010 NPs/mL in culture media. These findings support further investigation of CNP delivery via NPs as a future therapy for suppressing cardiac fibrosis.


Subject(s)
Myofibroblasts , Transforming Growth Factor beta1 , Humans , Natriuretic Peptide, C-Type/pharmacology , Urethane , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...