Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 7(7): 1120-1134, 2019 07.
Article in English | MEDLINE | ID: mdl-31164357

ABSTRACT

mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytotoxicity, Immunologic/immunology , Head and Neck Neoplasms/drug therapy , Killer Cells, Natural/drug effects , Natural Cytotoxicity Triggering Receptor 2/antagonists & inhibitors , Proliferating Cell Nuclear Antigen/chemistry , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Apoptosis , Cell Proliferation , Cytotoxicity, Immunologic/drug effects , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Natural Cytotoxicity Triggering Receptor 2/immunology , Proliferating Cell Nuclear Antigen/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
PLoS One ; 13(2): e0193008, 2018.
Article in English | MEDLINE | ID: mdl-29447242

ABSTRACT

NK cells play important role in immunity against pathogens and cancer. NK cell functions are regulated by inhibitory and activating receptors binding corresponding ligands on the surface of target cells. NK cells were shown to be recruited to the CNS following several pathological conditions. NK cells could impact CNS physiology by killing glial cells and by secreting IFN-γ. Astrocytes are intimately involved in immunological and inflammatory events occurring in the CNS and reactive astrogliosis is a key feature in HIV-associated neurocognitive disorders. There is little data on NK-astrocyte interactions and ligands expressed on astrocytes that could impact NK cell function. Natural cytotoxicity receptors (NCRs) play a critical role in the cytolytic function of NK cells. Among the NCRs, NKp44 is unique in expression and signal transduction. NKp44 is expressed only upon activation of NK cells and it can mediate both activating and inhibitory signals to NK cells. Here, we have studied the expression and function of natural cytotoxicity receptor NKp44 upon NK-astrocytes interactions in the presence or absence of an HIV peptide (HIV-3S peptide) shown to induce NK cell killing of CD4+ T cells during HIV-infection. Using a fusion protein consisting of the extracellular domain of NKp44 fused to Fc portion of human IgG, we determined the expression of a novel ligand for NKp44 (NKp44L) on astrocytes. Incubation of astrocytes with HIV-3S peptide downregulated NKp44L expression on astrocytes implicating protection from NK mediated killing. Thus, our study showed that NKp44 have a protective effect on astrocytes from NK cell mediated killing during HIV infection and impact astrocyte role in HAND.


Subject(s)
Astrocytes/immunology , Astrocytes/metabolism , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Natural Cytotoxicity Triggering Receptor 2/metabolism , Cells, Cultured , Coculture Techniques , HIV Infections/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Humans , Interferon-gamma/metabolism , Ligands , Male , Middle Aged , Natural Cytotoxicity Triggering Receptor 2/antagonists & inhibitors
3.
J Leukoc Biol ; 96(6): 1119-29, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25139289

ABSTRACT

Although the mechanisms underlying the cytotoxic effect of NK cells on tumor cells and intracellular bacteria have been studied extensively, it remains unclear how these cells kill extracellular bacterial pathogens. In this study, we examine how human NK cells kill Mycobacterium kansasii and M.tb. The underlying mechanism is contact dependent and requires two cytolytic proteins: perforin and granulysin. Mycobacteria induce enhanced expression of the cytolytic proteins via activation of the NKG2D/NCR cell-surface receptors and intracellular signaling pathways involving ERK, JNK, and p38 MAPKs. These results suggest that NK cells use similar cellular mechanisms to kill both bacterial pathogens and target host cells. This report reveals a novel role for NK cells, perforin, and granulysin in killing mycobacteria and highlights a potential alternative defense mechanism that the immune system can use against mycobacterial infection.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/physiology , Bacteriolysis , Killer Cells, Natural/immunology , Mycobacterium kansasii , Mycobacterium tuberculosis , Perforin/metabolism , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/pharmacology , Bacteriolysis/drug effects , Bacteriolysis/physiology , Cell Line, Tumor , Cell Wall/drug effects , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/ultrastructure , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , NK Cell Lectin-Like Receptor Subfamily K/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily K/biosynthesis , NK Cell Lectin-Like Receptor Subfamily K/genetics , Nanotubes , Natural Cytotoxicity Triggering Receptor 2/antagonists & inhibitors , Natural Cytotoxicity Triggering Receptor 2/biosynthesis , Natural Cytotoxicity Triggering Receptor 2/genetics , Natural Cytotoxicity Triggering Receptor 3/antagonists & inhibitors , Natural Cytotoxicity Triggering Receptor 3/biosynthesis , Natural Cytotoxicity Triggering Receptor 3/genetics , Perforin/biosynthesis , Perforin/genetics , Perforin/pharmacology , RNA Interference , RNA, Small Interfering/pharmacology , Transcription, Genetic/drug effects
4.
AIDS ; 23(9): 1077-87, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19424050

ABSTRACT

OBJECTIVE: HIV infection induces a progressive depletion of CD4 T cells. We showed that NKp44L, a cellular ligand for an activating natural killer (NK) receptor, is expressed on CD4 T cells during HIV infection and is correlated with both CD4 cell depletion and increase in viral load. NKp44LCD4 T cells are highly sensitive to the NK lysis activity. In contrast, HIV-infected CD4 T cells are resistant to NK killing, suggesting that HIV-1 developed strategies to avoid detection by the host cell immunity. DESIGN: To assess whether viral protein can affect NKp44L expression, using Nef-deficient virus as well as a panel of recombinant vaccinia viruses expressing all HIV-1 viral proteins was tested. The involvement of Nef in the downmodulation of NKp44L was determined using defined mutants of Nef. Functional consequences of Nef on NK-cell recognition were evaluated by either 51Cr-release assays and degranulation assays in presence of anti-NKp44L mAb. RESULTS: We observed that during HIV-1 infection, noninfected CD4 T cells exclusively expressed NKp44L, and demonstrate that Nef mediates NKp44L intracellular retention in HIV-infected cells. This has functional consequences on HIV-infected CD4 T cells recognition by NK cells, causing a decreased susceptibility to NK cytotoxicity. Furthermore, experiments in presence of neutralizing NKp44L mAb revealed that Nef inhibitory effect on NK cytotoxicity mainly depends on the NKp44L pathway. CONCLUSION: This novel escape mechanism could explain the resistance of HIV-infected cells to NK lysis and as a result play a key role in maintaining the HIV reservoir by avoiding recognition by NK cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , HIV Infections/immunology , HIV-1/immunology , Killer Cells, Natural/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology , Cells, Cultured , Female , Humans , Male , Natural Cytotoxicity Triggering Receptor 2/antagonists & inhibitors , Vaccinia virus/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...