Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.740
Filter
1.
Adv Exp Med Biol ; 1451: 125-137, 2024.
Article in English | MEDLINE | ID: mdl-38801575

ABSTRACT

Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.


Subject(s)
Interferon Type I , Viral Proteins , Humans , Animals , Interferon Type I/immunology , Interferon Type I/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Monkeypox virus/drug effects , Monkeypox virus/physiology , Monkeypox virus/genetics , Immunity, Innate , Necroptosis/drug effects , Signal Transduction/drug effects , Mpox (monkeypox)/virology
2.
BMC Biol ; 22(1): 122, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807188

ABSTRACT

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Subject(s)
Phosphoprotein Phosphatases , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Humans , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis , Immunity, Innate
3.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745191

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Metformin/pharmacology , Reperfusion Injury/prevention & control , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Necroptosis/drug effects , Male , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Hypoglycemic Agents/pharmacology , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism
4.
Sci Rep ; 14(1): 11133, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750159

ABSTRACT

Ovarian cancer (OC) is one of the most prevalent and fatal malignant tumors of the female reproductive system. Our research aimed to develop a prognostic model to assist inclinical treatment decision-making.Utilizing data from The Cancer Genome Atlas (TCGA) and copy number variation (CNV) data from the University of California Santa Cruz (UCSC) database, we conducted analyses of differentially expressed genes (DEGs), gene function, and tumor microenvironment (TME) scores in various clusters of OC samples.Next, we classified participants into low-risk and high-risk groups based on the median risk score, thereby dividing both the training group and the entire group accordingly. Overall survival (OS) was significantly reduced in the high-risk group, and two independent prognostic factors were identified: age and risk score. Additionally, three genes-C-X-C Motif Chemokine Ligand 10 (CXCL10), RELB, and Caspase-3 (CASP3)-emerged as potential candidates for an independent prognostic signature with acceptable prognostic value. In Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, pathways related to immune responses and inflammatory cell chemotaxis were identified. Cellular experiments further validated the reliability and precision of our findings. In conclusion, necroptosis-related genes play critical roles in tumor immunity, and our model introduces a novel strategy for predicting the prognosis of OC patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Necroptosis , Ovarian Neoplasms , Tumor Microenvironment , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Prognosis , Necroptosis/genetics , Tumor Microenvironment/genetics , Gene Expression Profiling , Middle Aged , Transcriptome , Biomarkers, Tumor/genetics , DNA Copy Number Variations
5.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Article in English | MEDLINE | ID: mdl-38728367

ABSTRACT

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Subject(s)
Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Necroptosis , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Male , Cytokines/metabolism
6.
Int J Oncol ; 64(6)2024 06.
Article in English | MEDLINE | ID: mdl-38757345

ABSTRACT

Hepatocellular carcinoma (HCC), one of the leading causes of cancer­related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi­tyrosine kinase inhibitors approved for first­line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non­apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Immunotherapy , Liver Neoplasms , Necroptosis , Pyroptosis , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Pyroptosis/drug effects , Pyroptosis/immunology , Ferroptosis/drug effects , Necroptosis/immunology , Necroptosis/drug effects , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Signal Transduction/drug effects , Animals
7.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786088

ABSTRACT

Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to recognize the complex and interconnected mechanisms of cell death, especially within apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and necroptosis are governed by intricate molecular pathways, with mitochondria acting as central decision-makers in steering cells towards either apoptosis or pyroptosis through various mediators. The choice between apoptosis and necroptosis is often determined by mitochondrial signaling and is orchestrated by specific proteins. The molecular dialogue and the regulatory influence of mitochondria within these cell death pathways are critical research areas. Comprehending the shared elements and the interplay between these death modalities is crucial for unraveling the complexities of cellular demise.


Subject(s)
Cell Death , Mitochondria , Signal Transduction , Humans , Mitochondria/metabolism , Animals , Apoptosis , Pyroptosis , Necroptosis/genetics
8.
Cancer Med ; 13(10): e7303, 2024 May.
Article in English | MEDLINE | ID: mdl-38800967

ABSTRACT

Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/ß-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.


Subject(s)
Apoptosis , Bone Neoplasms , Osteosarcoma , Signal Transduction , Osteosarcoma/pathology , Osteosarcoma/therapy , Osteosarcoma/metabolism , Humans , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Bone Neoplasms/metabolism , Autophagy , Ferroptosis , Necroptosis , Animals
9.
J Cancer Res Clin Oncol ; 150(5): 278, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801430

ABSTRACT

BACKGROUND: The ramifications of necroptosis on the prognostication of clear cell renal cell carcinoma (ccRCC) remain inadequately expounded. METHODS: A prognostic model delineating the facets of necroptosis in ccRCC was constructed, employing a compendium of algorithms. External validation was effectuated using the E-MTAB-1980 dataset. The exploration of immune infiltration scores was undertaken through the exploitation of multiple algorithms. Single-cell RNA sequencing data were procured from the GSE171306 dataset. Real-time quantitative PCR (RT-qPCR) was engaged to scrutinize the differential expression of SLC25A37 across cancer and paracancer tissues, as well as diverse cell lines. Assessments of proliferative and metastatic alterations in 769-P and 786-O cells were accomplished through Cell Counting Kit-8 (CCK8) and wound healing assays. RESULTS: The necroptosis-related signature (NRS) emerges as a discerning metric, delineating patients' immune attributes, tumor mutation burden, immunotherapy response, and drug susceptibility. Single-cell RNA sequencing analysis unveils the marked enrichment of SLC25A37 in tumor cells. Concurrently, RT-qPCR discloses the overexpression of SLC25A37 in both ccRCC tissues and cell lines. SLC25A37 knockdown mitigates the proliferative and metastatic propensities of 769-P and 786-O cells, as evidenced by CCK8 and wound healing assays. CONCLUSION: The NRS assumes a pivotal role in ascertaining the prognosis, tumor mutation burden, immunotherapy response, drug susceptibility, and immune cell infiltration features of ccRCC patients. SLC25A37 emerges as a putative player in immunosuppressive microenvironments, thereby providing a prospective avenue for the design of innovative immunotherapeutic targets for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Immunotherapy , Kidney Neoplasms , Necroptosis , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/immunology , Kidney Neoplasms/genetics , Prognosis , Immunotherapy/methods , Cell Line, Tumor , Cell Proliferation , Biomarkers, Tumor/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic
10.
Phytomedicine ; 129: 155635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701541

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.


Subject(s)
Curcumin , Mesenchymal Stem Cells , Mice, Inbred C57BL , Microglia , Neuroprotective Agents , Olfactory Mucosa , Reperfusion Injury , Curcumin/pharmacology , Animals , Reperfusion Injury/drug therapy , Microglia/drug effects , Mice , Mesenchymal Stem Cells/drug effects , Male , Neuroprotective Agents/pharmacology , Olfactory Mucosa/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Neurons/drug effects , Necroptosis/drug effects , Disease Models, Animal
11.
Pathol Res Pract ; 258: 155332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696856

ABSTRACT

Necroptosis can either be the cause of tumorigenesis or it can impede its process. Recently, it has been proved that long non-coding RNAs (lncRNAs) have different crucial roles at cellular level, especially on cell death. Regarding the important role of necroptosis and lncRNAs in the pathogenesis of different cancers, especially pituitary adenomas (PAs), we assessed expression levels of two necroptosis related genes, namely TRADD and BIRC2, in addition to three related lncRNAs, namely FLVCR1-DT, MAGI2-AS3, and NEAT1 in PAs compared with adjacent normal tissues (ANTs). TRADD had no significant difference between two groups; however, BIRC2, FLVCR1-DT, MAGI2-AS3, and NEAT1 were upregulated in PAs compared to ANTs (Expression ratios [95% CI] = 2.3 [1.47-3.6], 2.13 [1.02-4.44], 3.01 [1.76-5.16] and 2.47 [1.37-4.45], respectively). When taking into account different types of PAs, significant upregulation of BIRC2, MAGI2-AS3 and NEAT1 was recorded in non-functioning PAs compared with corresponding ANTs (Expression ratios [95% CI] =1.9 [1.04-3.43], 2.69 [1.26-5.72] and 2.22 [0.98-5.01], respectively). Additionally, higher levels of BIRC2 were associated with higher flow of CSF (P value=0.048). Moreover, higher Knosp classified tumors had lower levels of BIRC2 (P value=0.001). Finally, lower levels of MAGI2-AS3 were associated with larger tumor size (P value=0.006). NEAT1 expression was correlated with FLVCR1-DT and TRADD. TRADD expression was correlated with FLVCR1-DT. Additional correlation was observed between expression of BIRC2 and MAGI2-AS3. In sum, this study provides evidence that dysregulated levels of studied genes could contribute to the pathogenesis of pituitary tumors.


Subject(s)
Necroptosis , Pituitary Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Male , Middle Aged , Female , Adult , Necroptosis/genetics , Aged , Gene Expression Regulation, Neoplastic/genetics , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/metabolism , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism
12.
J Ethnopharmacol ; 330: 118253, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38679400

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY: The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS: DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 µL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS: DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS: This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.


Subject(s)
Alkaloids , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Dendrobium , Mice, Inbred C57BL , Necroptosis , Reactive Oxygen Species , Animals , Dendrobium/chemistry , Reactive Oxygen Species/metabolism , Necroptosis/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Alkaloids/pharmacology , Alkaloids/isolation & purification , Male , Mice , Carbon Tetrachloride/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism
13.
Cell Signal ; 119: 111195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688381

ABSTRACT

OBJECTIVE: The specific mechanisms of sevoflurane-induced neurotoxicity are still undetermined. The aim of the current study was to investigate the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in sevoflurane-induced neuronal necroptosis. METHODS: BV2 microglial cells were divided into a control group and a 4% sevoflurane exposure group. Western blotting was used to detect expression of the M1 polarization marker inducible nitric oxide synthase (iNOS). RNA was collected for RNA sequencing analysis. After STING knockdown in microglia, western blotting was performed to examine expression of the pro-inflammatory markers CD16 and CD32. The tumor necrosis factor-α (TNF-α) level in media was detected using an enzyme-linked immunosorbent assay. BV2 microglia conditioned media was collected to incubate HT22 neuronal cells, and their cell activity was measured using a CCK8 assay. Calcium was observed by fluorescence. Western blotting was performed to evaluate receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) expression. Neuronal necroptosis rate were detected using flow cytometry. RESULTS: Sevoflurane exposure promoted microglial M1 polarization. The cGAS/STING pathway was screened and identified by RNA sequencing analysis of sevoflurane-exposed microglia and the control group. Compared with the control group, STING knockdown in microglia rescued the amoeboid morphology, inhibited TNF-α release, and significantly decreased iNOS, CD16, and CD32 expression. Moreover, calcium ions and necroptosis within neurons were decreased, and RIPK1, RIPK3, and p-MLKL expression was markedly decreased in microglia media culture with STING knockdown. CONCLUSION: These results suggest that sevoflurane can regulate microglial M1 polarization by activating the cGAS/STING signaling pathway and increasing immune factor release, thus accelerating the neuronal necroptosis induced by calcium overload.


Subject(s)
Membrane Proteins , Microglia , Necroptosis , Neurons , Nucleotidyltransferases , Sevoflurane , Signal Transduction , Microglia/metabolism , Microglia/drug effects , Animals , Signal Transduction/drug effects , Sevoflurane/pharmacology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Necroptosis/drug effects , Neurons/metabolism , Neurons/drug effects , Nucleotidyltransferases/metabolism , Cell Line , Tumor Necrosis Factor-alpha/metabolism
14.
World J Gastroenterol ; 30(15): 2155-2174, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38681991

ABSTRACT

BACKGROUND: Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer. OSW-1, which is derived from the bulbs of Ornithogalum saundersiae Baker, exerts a wide range of pharmacological effects. AIM: To explore whether OSW-1 can induce necroptosis in colorectal cancer (CRC) cells, thereby expanding its range of clinical applications. METHODS: We performed a sequence of functional experiments, including Cell Counting Kit-8 assays and flow cytometry analysis, to assess the inhibitory effect of OSW-1 on CRC cells. We utilized quantitative proteomics, employing tandem mass tag labeling combined with liquid chromatography-tandem mass spectrometry, to analyze changes in protein expression. Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins. Transmission electron microscopy (TEM) and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis. Finally, western blotting, siRNA experiments, and immunoprecipitation were employed to evaluate protein interactions within CRC cells. RESULTS: The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells, and this effect was accompanied by a necroptosis-like morphology that was observable via TEM. OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway. Furthermore, the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1. CONCLUSION: We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway, and that this effect is mediated by the RIPK1-p62/SQSTM1 complex, in CRC cells. These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.


Subject(s)
Colorectal Neoplasms , Necroptosis , Plant Extracts , Receptor-Interacting Protein Serine-Threonine Kinases , Sequestosome-1 Protein , Signal Transduction , Humans , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , HCT116 Cells , Necroptosis/drug effects , Plant Extracts/pharmacology , Protein Kinases/metabolism , Proteomics/methods , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
15.
Cell Cycle ; 23(5): 495-518, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38678316

ABSTRACT

A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.


Subject(s)
Atherosclerosis , Autophagy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Humans , Animals , Autophagy/physiology , Apoptosis , Macrophages/metabolism , Macrophages/pathology , Cell Death/physiology , Pyroptosis/physiology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Ferroptosis/physiology , Necroptosis , Necrosis
16.
World J Gastroenterol ; 30(14): 1968-1981, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38681120

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.


Subject(s)
Disease Progression , Hepatocytes , Necroptosis , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/diagnosis , Humans , Hepatocytes/pathology , Liver/pathology , Ferroptosis , Pyroptosis , Animals , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis
17.
BMC Cancer ; 24(1): 544, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684944

ABSTRACT

In recent years, there has been an increase in the incidence and mortality rates of prostate cancer (PCa). However, the specific molecular mechanisms underlying its occurrence and development remain unclear, necessitating the identification of new therapeutic targets. Through bioinformatics analysis, we discovered a previously unstudied differential gene called HIST3H2A in prostate cancer. Our study revealed that HIST3H2A is highly expressed in PCa tissues, as confirmed by analysis of both the GEO and UALCAN databases. Further analysis using the KEGG database demonstrated that HIST3H2A regulates the pathway of programmed necroptosis in cells. Additionally, we observed significant up-regulation of HIST3H2A in PCa tissues and cell lines. HIST3H2A was found to regulate cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process in tumors. Notably, HIST3H2A's role in regulating programmed necroptosis in prostate cancer cells differs from its role in apoptosis. In vitro and in vivo experiments collectively support the key role of HIST3H2A in promoting the development of prostate cancer, highlighting its potential as a therapeutic target for patients with PCa.


Subject(s)
Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Necroptosis , Prostatic Neoplasms , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Humans , Necroptosis/genetics , Animals , Mice , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Apoptosis
18.
Toxicology ; 504: 153812, 2024 May.
Article in English | MEDLINE | ID: mdl-38653376

ABSTRACT

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.


Subject(s)
Calcium , Chickens , Mitochondria , Necroptosis , Wallerian Degeneration , Animals , Necroptosis/drug effects , Calcium/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Wallerian Degeneration/chemically induced , Wallerian Degeneration/pathology , Wallerian Degeneration/metabolism , Female , Mice , Tritolyl Phosphates/toxicity , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/pharmacology , Cell Line, Tumor
20.
Eur J Pharmacol ; 972: 176572, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38614381

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the severe form of interstitial pneumonias. Acute exacerbation (AE) of IPF is characterized by progressive lung fibrosis with the irreversible lung function decline and inflammation, and is often fatal with poor prognosis. However, the physiological and molecular mechanisms in AE of IPF are still not fully understood. In this study, we investigated the mechanism underlying AE of IPF, using bleomycin (BLM) and lipopolysaccharide (LPS) (BLM + LPS)-treated mice. The mice were treated with a single dose of 1.5 mg/kg BLM (on day 0) and/or 0.5 mg/kg LPS (on day 14), and maintained for another 7 days (total 21 days). Administration of BLM + LPS more severely aggravated the respiratory function, fibrosis, and inflammation in the lungs, together with the elevated interleukin-6 level in bronchoalveolar lavage fluid, than the control or BLM alone-treated mice. Moreover, the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay demonstrated that subsequent treatment with LPS elevated cell death in the lungs of BLM-administered mice. Furthermore, the expression levels of mixed lineage kinase domain-like protein (MLKL), a marker of necroptotic cell death, and CD68-positive macrophages were increased, and most of them were co-stained in the lungs of BLM + LPS-treated mice. These results, taken together, indicate that BLM + LPS treatment showed more exacerbated the respiratory function with extensive fibrosis and inflammation than treatment with BLM alone in mice. Fibrosis and inflammation in AE of IPF seen in BLM + LPS-administered mice included an increase in macrophages and their necroptotic cell death.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Lipopolysaccharides , Macrophages , Animals , Bleomycin/toxicity , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Mice , Male , Macrophages/drug effects , Macrophages/pathology , Macrophages/metabolism , Disease Progression , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Necroptosis/drug effects , Interleukin-6/metabolism , Bronchoalveolar Lavage Fluid/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...