Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Mikrochim Acta ; 187(1): 55, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848716

ABSTRACT

An electrochromatographic capillary was modified with graphene oxide (GO), and the coating was characterized by scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectra. By utilizing maltodextrin (MD) as the chiral selector, the basic chiral drugs nefopam (NEF), amlodipine (AML), citalopram hydrobromide (CIT), econazole (ECO), ketoconazole (KET) and cetirizine hydrochloride (CET) can be enantiomerically separated on this CEC. Compared with an uncoated silica capillary, the resolutions are markedly improved (AML: 0.32 → 1.45; ECO: 0.55 → 1.89; KET: 0.88 → 4.77; CET: 0.81 → 2.46; NEF: 1.46 → 2.83; CIT: 1.77 → 4.38). Molecular modeling was applied to demonstrate the mechanism of enantioseparation, which showed a good agreement with the experimental results. Graphical abstractSchematic representation of the preparation of graphene oxide-modified capillary (GO@capillary) for enantioseparation of drug enantiomers. The monolayered GO was used as the coating of the GO@capillary. Then the capillary was applied to construct capillary electrochromatography system with maltodextrin for separation of basic chiral drugs.


Subject(s)
Graphite/chemistry , Polysaccharides/chemistry , Amlodipine/chemistry , Amlodipine/isolation & purification , Capillary Electrochromatography , Cetirizine/chemistry , Cetirizine/isolation & purification , Citalopram/chemistry , Citalopram/isolation & purification , Econazole/chemistry , Econazole/isolation & purification , Ketoconazole/chemistry , Ketoconazole/isolation & purification , Molecular Docking Simulation , Molecular Structure , Nefopam/chemistry , Nefopam/isolation & purification , Particle Size , Surface Properties
2.
Electrophoresis ; 36(4): 607-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25421375

ABSTRACT

It has been reported that chiral dual system is able to improve the enantioseparation of enantiomers in many cases. Currently, the dual systems involved in CE chiral separation are mostly dual CDs systems, and the polysaccharides-based chiral dual system was reported in only one paper. To the best of our knowledge, the use of chondroitin sulfate C (CSC)-based dual system for enantiomeric separation has not been reported previously. Herein, four CSC-based chiral dual systems, namely CSC/glycogen, CSC/chondroitin sulfate A (CSA), CSC/hydroxypropyl-ß-CD (HP-ß-CD), as well as CSC/ß-CD (ß-CD), were evaluated for the first time for their enantioseparation capability by CE in this paper. During the course of the work, the influences of chiral selector concentration and buffer pH values on enantioseparation in dual systems were systematically investigated. Under the optimized conditions, the dual system consisting of CSC and glycogen exhibited better separations toward nefopam, duloxetine, sulconazole, atenolol, laudanosine, and cetirizine enantiomers compared to the single CSC or glycogen system. The combination of CSC and HP-ß-CD improved the separation of amlodipine and chlorphenamine enantiomers. However, no synergistic effect was observed in the CSC/CSA and CSC/ß-CD systems.


Subject(s)
Chondroitin Sulfates/chemistry , Electrophoresis, Capillary/methods , Atenolol/isolation & purification , Buffers , Cetirizine/isolation & purification , Chlorpheniramine/isolation & purification , Duloxetine Hydrochloride , Electrophoresis, Capillary/instrumentation , Glycogen/chemistry , Hydrogen-Ion Concentration , Imidazoles/isolation & purification , Isoquinolines/isolation & purification , Nefopam/isolation & purification , Stereoisomerism , Thiophenes/isolation & purification , beta-Cyclodextrins/chemistry
3.
Electrophoresis ; 27(5-6): 1263-75, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16523462

ABSTRACT

Chiral micellar EKC (CMEKC) coupled to ESI-MS using polymeric surfactants as pseudostationary phases is investigated for simultaneous enantioseparation of two benzodiazepines, (+/-)-oxazepam ((+/-)-OXA) and (+/-)-lorazepam ((+/-)-LOR), and one benzoxazocine, (+/-)-nefopam ((+/-)-NEF). First, enantioselectivity and electrospray sensitivity of six chiral polymeric surfactants for all three chiral compounds are compared. Second, using poly(sodium N-undecenoyl-L-leucinate) as pseudostationary phase, the organic modifiers (methanol (MeOH), isopropanol, and ACN) are added into the running buffer to further improve chiral resolution (RS). Next, a CMEKC-ESI-MS method for the simultaneous enantioseparation of two benzodiazepines is further developed by using a dipeptide polymeric surfactant, poly(sodium N-undecenoxy carbonyl-L,L-leucyl-valinate) (poly-L,L-SUCLV). The CMEKC conditions including nebulizer pressure, capillary length, ammonium acetate concentration, pH, poly-L,L-SUCLV concentration, and capillary temperature were optimized to achieve maximum chiral RS and highest sensitivity of MS detection. The spray chamber parameters (drying gas temperature and drying gas flow rate) as well as sheath liquid conditions (MeOH content, pH, flow rate, and ionic strength) were found to significantly influence MS S/N of both (+/-)-OXA and (+/-)-LOR. Finally, a comparative study between simultaneous UV and MS detection showed high plate numbers, better chiral RS, and enhanced detectability with CMEKC-MS. However, speed of analysis was faster using CMEKC-UV.


Subject(s)
Benzodiazepines/isolation & purification , Chromatography, Micellar Electrokinetic Capillary/methods , Nefopam/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Benzodiazepines/chemistry , Lorazepam/chemistry , Lorazepam/isolation & purification , Nefopam/chemistry , Oxazepam/chemistry , Oxazepam/isolation & purification , Polymers , Reproducibility of Results , Stereoisomerism , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...