Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.714
Filter
1.
PLoS One ; 19(5): e0302785, 2024.
Article in English | MEDLINE | ID: mdl-38768150

ABSTRACT

INTRODUCTION: The rates of gonorrhea and chlamydia have been increasing in the years preceding the COVID19 pandemic. Because most gonorrhea and chlamydia infections are located in the oropharynx and rectum for men who have sex with men (MSM), and because at-home self-collected swabs for these infections are not licensed by Health Canada or the United States Food and Drug Administration, decreased accessed to in-person care during and since the COVID19 pandemic potentially means missed case findings. OBJECTIVES: To evaluate the performance of at-home self-collected pharyngeal and rectal swabs for gonorrhea and chlamydia nucleic acid amplification testing. METHODOLOGY: All persons who contacted our Sexual Health Clinic and who had a clinical indication to complete oral and/or rectal swabs for gonorrhea and chlamydia were invited to complete at-home swabs in advance of their scheduled appointments. We mailed swabs and instructions to those who consented. Participants brought these swabs to their scheduled in clinic appointments, where we repeated the same swabs. All matching swabs were sent to the laboratory for analysis to determine concordance. RESULTS: From September 8, 2022 to July 18, 2023, we enrolled 296 eligible participants who provided 1184 swabs. For analysis, cancelled specimens and specimens with invalid results were excluded, leaving 1032 swabs for comparison. We identified 66 STI diagnoses in 47 unique participants. Overall accuracy was high (exceeding 99%), except for rectal chlamydia, which was 96.0%. While the performance of self-swabs for chlamydia was lower compared to gonorrhea, at-home swabs identified six chlamydia infections that were missed by in-clinic collected swabs (two pharyngeal, four rectal). Removing these six cases as "false positives" increased overall accuracy for chlamydia detection to 99.7% (pharyngeal) and 97.8% (rectal). CONCLUSION: Self-collected at-home swabs had good performance acceptable for gonorrhea and chlamydia nucleic acid amplification testing.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Gonorrhea , Neisseria gonorrhoeae , Pharynx , Rectum , Specimen Handling , Humans , Chlamydia trachomatis/isolation & purification , Chlamydia trachomatis/genetics , Chlamydia Infections/diagnosis , Chlamydia Infections/microbiology , Gonorrhea/diagnosis , Gonorrhea/microbiology , Male , Neisseria gonorrhoeae/isolation & purification , Neisseria gonorrhoeae/genetics , Rectum/microbiology , Pharynx/microbiology , Specimen Handling/methods , Adult , Female , Nucleic Acid Amplification Techniques/methods , Homosexuality, Male , Middle Aged , Self Care , Young Adult
2.
JAMA ; 331(20): 1695-1697, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38700901

ABSTRACT

This Medical News article discusses approaches to slow the spread of antimicrobial resistance in Neisseria gonorrhoeae.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Gonorrhea , Neisseria gonorrhoeae , Humans , Gonorrhea/drug therapy , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/therapeutic use , United States
3.
Biosensors (Basel) ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38785734

ABSTRACT

Sexually transmitted diseases (STDs) are a global concern because approximately 1 million new cases emerge daily. Most STDs are curable, but if left untreated, they can cause severe long-term health implications, including infertility and even death. Therefore, a test enabling rapid and accurate screening and genotyping of STD pathogens is highly awaited. Herein, we present the development of the DNA-based 6STD Genotyping 9G Membrane test, a lateral flow strip membrane assay, for the detection and genotyping of six STD pathogens, including Trichomonas vaginalis, Ureaplasma urealyticum, Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma hominis, and Mycoplasma genitalium. Here, we developed a multiplex PCR primer set that allows PCR amplification of genomic materials for these six STD pathogens. We also developed the six ssDNA probes that allow highly efficient detection of the six STD pathogens. The 6STD Genotyping 9G Membrane test lets us obtain the final detection and genotyping results in less than 30 m after PCR at 25 °C. The accuracy of the 6STD Genotyping 9G membrane test in STD genotyping was confirmed by its 100% concordance with the sequencing results of 120 clinical samples. Therefore, the 6STD Genotyping 9G Membrane test emerges as a promising diagnostic tool for precise STD genotyping, facilitating informed decision-making in clinical practice.


Subject(s)
Chlamydia trachomatis , Genotype , Neisseria gonorrhoeae , Sexually Transmitted Diseases , Humans , Chlamydia trachomatis/genetics , Chlamydia trachomatis/isolation & purification , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/isolation & purification , Sexually Transmitted Diseases/microbiology , Sexually Transmitted Diseases/diagnosis , Trichomonas vaginalis/genetics , Trichomonas vaginalis/isolation & purification , Genotyping Techniques , Mycoplasma hominis/isolation & purification , Mycoplasma hominis/genetics , Ureaplasma urealyticum/genetics , Ureaplasma urealyticum/isolation & purification , DNA , Mycoplasma genitalium/genetics , Mycoplasma genitalium/isolation & purification , Biosensing Techniques , DNA, Bacterial/analysis , Multiplex Polymerase Chain Reaction/methods
4.
Sex Transm Infect ; 100(4): 226-230, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38702191

ABSTRACT

OBJECTIVES: Antibiotic resistance in gonorrhoea is of significant public health concern with the emergence of resistance to last-line therapies such as ceftriaxone. Despite around half of Neisseria gonorrhoeae isolates tested in the UK being susceptible to ciprofloxacin, very little ciprofloxacin is used in clinical practice. Testing for the S91F mutation associated with ciprofloxacin resistance is now available in CE-marked assays and may reduce the requirement for ceftriaxone, but many patients are treated empirically, or as sexual contacts, which may limit any benefit. We describe the real-world impact of such testing on antimicrobial use and clinical outcomes in people found to have gonorrhoea in a large urban UK sexual health clinic. METHODS: Molecular ciprofloxacin resistance testing (ResistancePlus GC assay (SpeeDx)) was undertaken as an additional test after initial diagnosis (m2000 Realtime CT/NG assay (Abbott Molecular)) in those not already known to have had antimicrobial treatment. Data from a 6-month period (from March to September 2022) were analysed to determine treatment choice and treatment outcome. RESULTS: A total of 998 clinical samples tested positive for N. gonorrhoeae in 682 episodes of infection. Of the 560 (56%) samples eligible for resistance testing, 269 (48.0%) were reported as wild-type, 180 (32.1%) were predicted to be resistant, 63 (11.3%) had an indeterminate resistance profile, and in 48 (8.6%) samples, N. gonorrhoeae was not detected. Ciprofloxacin was prescribed in 172 (75%) of 228 episodes in which the wild-type strain was detected. Four (2%) of those treated with ciprofloxacin had a positive test-of-cure sample by NAAT, with no reinfection risk. All four had ciprofloxacin-susceptible infection by phenotypic antimicrobial susceptibility testing. CONCLUSIONS: In routine practice in a large UK clinic, molecular ciprofloxacin resistance testing led to a significant shift in antibiotic use, reducing use of ceftriaxone. Testing can be targeted to reduce unnecessary additional testing. Longer term impact on antimicrobial resistance requires ongoing surveillance.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Drug Resistance, Bacterial , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Humans , Ciprofloxacin/therapeutic use , Ciprofloxacin/pharmacology , Gonorrhea/drug therapy , Gonorrhea/diagnosis , Gonorrhea/microbiology , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Female , Adult , United Kingdom , Ceftriaxone/therapeutic use , Ceftriaxone/pharmacology , Mutation , Young Adult , Middle Aged
5.
Front Cell Infect Microbiol ; 14: 1407863, 2024.
Article in English | MEDLINE | ID: mdl-38808060

ABSTRACT

The genus Neisseria, which colonizes mucosal surfaces, includes both commensal and pathogenic species that are exclusive to humans. The two pathogenic Neisseria species are closely related but cause quite different diseases, meningococcal sepsis and meningitis (Neisseria meningitidis) and sexually transmitted gonorrhea (Neisseria gonorrhoeae). Although obvious differences in bacterial niches and mechanisms for transmission exists, pathogenic Neisseria have high levels of conservation at the levels of nucleotide sequences, gene content and synteny. Species of Neisseria express broad-spectrum O-linked protein glycosylation where the glycoproteins are largely transmembrane proteins or lipoproteins localized on the cell surface or in the periplasm. There are diverse functions among the identified glycoproteins, for example type IV biogenesis proteins, proteins involved in antimicrobial resistance, as well as surface proteins that have been suggested as vaccine candidates. The most abundant glycoprotein, PilE, is the major subunit of pili which are an important colonization factor. The glycans attached can vary extensively due to phase variation of protein glycosylation (pgl) genes and polymorphic pgl gene content. The exact roles of glycosylation in Neisseria remains to be determined, but increasing evidence suggests that glycan variability can be a strategy to evade the human immune system. In addition, pathogenic and commensal Neisseria appear to have significant glycosylation differences. Here, the current knowledge and implications of protein glycosylation genes, glycan diversity, glycoproteins and immunogenicity in pathogenic Neisseria are summarized and discussed.


Subject(s)
Neisseria gonorrhoeae , Neisseria meningitidis , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycoproteins/metabolism , Glycoproteins/genetics , Glycosylation , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Neisseria gonorrhoeae/pathogenicity , Neisseria gonorrhoeae/immunology , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Polysaccharides/metabolism , Meningitis, Meningococcal/microbiology , Gonorrhea/microbiology
7.
Infect Immun ; 92(5): e0000424, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38563734

ABSTRACT

Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.


Subject(s)
Neisseria , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Peptidoglycan , Animals , Humans , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins , Neisseria/genetics , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism
8.
J Basic Microbiol ; 64(6): e2300751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644586

ABSTRACT

NAD+-dependent (2 R,3 R)­2,3­butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)­2,3­butanediol (RR-BD) and meso-2,3­butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent KM values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent KM values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in KM (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in kcat. These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.


Subject(s)
Alcohol Oxidoreductases , Butylene Glycols , Molecular Docking Simulation , Mutagenesis, Site-Directed , Neisseria gonorrhoeae , Phenylalanine , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Kinetics , Butylene Glycols/metabolism , Phenylalanine/metabolism , Phenylalanine/genetics , Binding Sites , Substrate Specificity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Valine/metabolism , Valine/genetics , Catalytic Domain , Hydrophobic and Hydrophilic Interactions
9.
Microbiol Spectr ; 12(6): e0056024, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38647280

ABSTRACT

The continued emergence of Neisseria gonorrhoeae strains that express resistance to multiple antibiotics, including the last drug for empiric monotherapy (ceftriaxone), necessitates the development of new treatment options to cure gonorrheal infections. Toward this goal, we recently reported that corallopyronin A (CorA), which targets the switch region of the ß' subunit (RpoC) of bacterial DNA-dependent RNA polymerase (RNAP), has potent anti-gonococcal activity against a panel of multidrug-resistant clinical strains. Moreover, in that study, CorA could eliminate gonococcal infection of primary human epithelial cells and gonococci in a biofilm state. To determine if N. gonorrhoeae could develop high-level resistance to CorA in a single step, we sought to isolate spontaneous mutants expressing any CorA resistance phenotypes. However, no single-step mutants with high-level CorA resistance were isolated. High-level CorA resistance could only be achieved in this study through a multi-step pathway involving over-expression of the MtrCDE drug efflux pump and single amino acid changes in the ß and ß' subunits (RpoB and RpoC, respectively) of RNAP. Molecular modeling of RpoB and RpoC interacting with CorA was used to deduce how the amino acid changes in RpoB and RpoC could influence gonococcal resistance to CorA. Bioinformatic analyses of whole genome sequences of clinical gonococcal isolates indicated that the CorA resistance determining mutations in RpoB/C, identified herein, are very rare (≤ 0.0029%), suggesting that the proposed pathway for resistance is predictive of how this phenotype could potentially evolve if CorA is used therapeutically to treat gonorrhea in the future. IMPORTANCE: The continued emergence of multi-antibiotic-resistant strains of Neisseria gonorrhoeae necessitates the development of new antibiotics that are effective against this human pathogen. We previously described that the RNA polymerase-targeting antibiotic corallopyronin A (CorA) has potent activity against a large collection of clinical strains that express different antibiotic resistance phenotypes including when such gonococci are in a biofilm state. Herein, we tested whether a CorA-sensitive gonococcal strain could develop spontaneous resistance. Our finding that CorA resistance could only be achieved by a multi-step process involving over-expression of the MtrCDE efflux pump and single amino acid changes in RpoB and RpoC suggests that such resistance may be difficult for gonococci to evolve if this antibiotic is used in the future to treat gonorrheal infections that are refractory to cure by other antibiotics.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , DNA-Directed RNA Polymerases , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/enzymology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Gonorrhea/microbiology , Gonorrhea/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Mutation , Drug Resistance, Multiple, Bacterial/genetics , Biofilms/drug effects , Biofilms/growth & development , Lactones
10.
BMJ Open ; 14(4): e081675, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626958

ABSTRACT

INTRODUCTION: Gonorrhoea, the sexually transmissible infection caused by Neisseria gonorrhoeae, has a substantial impact on sexual and reproductive health globally with an estimated 82 million new infections each year worldwide. N. gonorrhoeae antimicrobial resistance continues to escalate, and disease control is largely reliant on effective therapy as there is no proven effective gonococcal vaccine available. However, there is increasing evidence from observational cohort studies that the serogroup B meningococcal vaccine four-component meningitis B vaccine (4CMenB) (Bexsero), licensed to prevent invasive disease caused by Neisseria meningitidis, may provide cross-protection against the closely related bacterium N. gonorrhoeae. This study will evaluate the efficacy of 4CMenB against N. gonorrhoeae infection in men (cis and trans), transwomen and non-binary people who have sex with men (hereafter referred to as GBM+). METHODS AND ANALYSIS: This is a double-blind, randomised placebo-controlled trial in GBM+, either HIV-negative on pre-exposure prophylaxis against HIV or living with HIV (CD4 count >350 cells/mm3), who have had a diagnosis of gonorrhoea or infectious syphilis in the last 18 months (a key characteristic associated with a high risk of N. gonorrhoeae infection). Participants are randomised 1:1 to receive two doses of 4CMenB or placebo 3 months apart. Participants have 3-monthly visits over 24 months, which include testing for N. gonorrhoeae and other sexually transmissible infections, collection of demographics, sexual behaviour risks and antibiotic use, and collection of research samples for analysis of N. gonorrhoeae-specific systemic and mucosal immune responses. The primary outcome is the incidence of the first episode of N. gonorrhoeae infection, as determined by nucleic acid amplification tests, post month 4. Additional outcomes consider the incidence of symptomatic or asymptomatic N. gonorrhoeae infection at different anatomical sites (ie, urogenital, anorectum or oropharynx), incidence by N. gonorrhoeae genotype and antimicrobial resistance phenotype, and level and functional activity of N. gonorrhoeae-specific antibodies. ETHICS AND DISSEMINATION: Ethical approval was obtained from the St Vincent's Hospital Human Research Ethics Committee, St Vincent's Hospital Sydney, NSW, Australia (ref: 2020/ETH01084). Results will be disseminated in peer-reviewed journals and via presentation at national and international conferences. TRIAL REGISTRATION NUMBER: NCT04415424.


Subject(s)
Anti-Infective Agents , Gonorrhea , HIV Infections , Meningococcal Infections , Meningococcal Vaccines , Sexual and Gender Minorities , Male , Humans , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Gonorrhea/drug therapy , Meningococcal Vaccines/therapeutic use , Meningococcal Infections/epidemiology , Homosexuality, Male , Neisseria gonorrhoeae/genetics , HIV Infections/drug therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
11.
J Med Microbiol ; 73(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38591530

ABSTRACT

Sexually transmitted infections (STI) are a public health problem. Real-time PCR assays are the most sensitive test for screening and diagnosis of these infections. The aim of this study was to evaluate a new CT/NG/TV/MG Real-Time PCR (RT-PCR) kit (Vircell) for the detection of Chamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium and Trichomonas vaginalis for the diagnosis of sexual transmitted infections using the Allplex STI Essential Assay (Seegene) as the reference's method. A total of 497 samples from different anatomical sites (endocervical, urethral, rectal, pharyngeal and urine) were analysed from October 2022 to February 2023. A total of 108 (21.73 %) and 106 (21.33 %) positive samples were found for any of the assays used. The most commonly detected pathogen was N. gonorrhoeae (52 samples; 10.46 %), and the least commonly detected was T. vaginalis (three samples; 0.60 %). The anatomical site with the highest prevalence of micro-organisms was a non-urogenital site, the pharynx (26 positive samples; 5.23 %). Using the Allplex STI Essential Assay (Seegene) as the reference method, the diagnosis performance showed that the average specificity of CT/NG/TV/MG RT-PCR Kit (Vircell) was 99.84 % and the sensitivity was 99.53 %. The overall concordance was k=0.98 (CI95 %; 0.96-1). In conclusion, the CT/NG/TV/MG RT-PCR Kit (Vircell) assay shows a good sensitivity and specificity and constitutes a promising and additional alternative to routine procedures for distinct types of clinical specimen in diagnosis STI.


Subject(s)
Chlamydia Infections , Gonorrhea , Mycoplasma Infections , Mycoplasma genitalium , Sexually Transmitted Diseases , Trichomonas vaginalis , Humans , Real-Time Polymerase Chain Reaction , Chlamydia trachomatis/genetics , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/epidemiology , Trichomonas vaginalis/genetics , Neisseria gonorrhoeae/genetics , Mycoplasma genitalium/genetics , Mycoplasma Infections/diagnosis , Mycoplasma Infections/epidemiology , Tomography, X-Ray Computed , Chlamydia Infections/diagnosis , Gonorrhea/diagnosis , Gonorrhea/epidemiology
12.
Lancet Microbe ; 5(5): e478-e488, 2024 May.
Article in English | MEDLINE | ID: mdl-38614111

ABSTRACT

BACKGROUND: Regular quality-assured whole-genome sequencing linked to antimicrobial resistance (AMR) and patient metadata is imperative to elucidate the shifting gonorrhoea epidemiology, both nationally and internationally. We aimed to examine the gonococcal population in the European Economic Area (EEA) in 2020, elucidate emerging and disappearing gonococcal lineages associated with AMR and patient metadata, compare with 2013 and 2018 whole-genome sequencing data, and explain changes in gonococcal AMR and gonorrhoea epidemiology. METHODS: In this retrospective genomic surveillance study, we analysed consecutive gonococcal isolates that were collected in EEA countries through the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) in 2020, and made comparisons with Euro-GASP data from 2013 and 2018. All isolates had linked AMR data (based on minimum inhibitory concentration determination) and patient metadata. We performed whole-genome sequencing and molecular typing and AMR determinants were derived from quality-checked whole-genome sequencing data. Links between genomic lineages, AMR, and patient metadata were examined. FINDINGS: 1932 gonococcal isolates collected in 2020 in 21 EEA countries were included. The majority (81·2%, 147 of 181 isolates) of azithromycin resistance (present in 9·4%, 181 of 1932) was explained by the continued expansion of the Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) clonal complexes (CCs) 63, 168, and 213 (with mtrD/mtrR promoter mosaic 2) and the novel NG-STAR CC1031 (semi-mosaic mtrD variant 13), associated with men who have sex with men and anorectal or oropharyngeal infections. The declining cefixime resistance (0·5%, nine of 1932) and negligible ceftriaxone resistance (0·1%, one of 1932) was largely because of the progressive disappearance of NG-STAR CC90 (with mosaic penA allele), which was predominant in 2013. No known resistance determinants for novel antimicrobials (zoliflodacin, gepotidacin, and lefamulin) were found. INTERPRETATION: Azithromycin-resistant clones, mainly with mtrD mosaic or semi-mosaic variants, appear to be stabilising at a relatively high level in the EEA. This mostly low-level azithromycin resistance might threaten the recommended ceftriaxone-azithromycin therapy, but the negligible ceftriaxone resistance is encouraging. The decreased genomic population diversity and increased clonality could be explained in part by the COVID-19 pandemic resulting in lower importation of novel strains into Europe. FUNDING: European Centre for Disease Prevention and Control and Örebro University Hospital.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Whole Genome Sequencing , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Humans , Retrospective Studies , Europe/epidemiology , Gonorrhea/epidemiology , Gonorrhea/drug therapy , Gonorrhea/microbiology , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Female , Adult , Genome, Bacterial/genetics , Middle Aged , Young Adult , Genomics , Azithromycin/pharmacology , Azithromycin/therapeutic use , Adolescent
13.
mBio ; 15(5): e0011924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587424

ABSTRACT

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE: Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.


Subject(s)
Gonorrhea , N-Acetylneuraminic Acid , Neisseria gonorrhoeae , Neutrophil Activation , Neutrophils , Sialic Acid Binding Immunoglobulin-like Lectins , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Gonorrhea/immunology , Gonorrhea/microbiology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Respiratory Burst , Host-Pathogen Interactions/immunology , Immune Evasion
14.
J Infect ; 88(6): 106168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670270

ABSTRACT

OBJECTIVES: The utility of whole genome sequencing (WGS) to inform sexually transmitted infection (STI) patient management is unclear. Timely WGS data might support clinical management of STIs by characterising epidemiological links and antimicrobial resistance profiles. We conducted a systematic review of clinical application of WGS to any human pathogen that may be transposable to gonorrhoea. METHODS: We searched six databases for articles published between 01/01/2010-06/02/2023 that reported on real/near real-time human pathogen WGS to inform clinical intervention. All article types from all settings were included. Findings were analysed using narrative synthesis. RESULTS: We identified 12,179 articles, of which eight reported applications to inform tuberculosis (n = 7) and gonorrhoea (n = 1) clinical patient management. WGS data were successfully used as an adjunct to clinical and epidemiological data to enhance contact-tracing (n = 2), inform antimicrobial therapy (n = 5) and identify cross-contamination (n = 1). WGS identified gonorrhoea transmission chains that were not established via partner notification. Future applications could include insights into pathogen exposure detected within sexual networks for targeted patient management. CONCLUSIONS: While there was some evidence of WGS use to provide individualised tuberculosis and gonorrhoea treatment, the eight identified studies contained few participants. Future research should focus on testing WGS intervention effectiveness and examining ethical considerations of STI WGS use.


Subject(s)
Gonorrhea , Whole Genome Sequencing , Humans , Gonorrhea/drug therapy , Gonorrhea/microbiology , Gonorrhea/epidemiology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/drug effects , Contact Tracing , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/epidemiology , Genome, Bacterial , Patient Care
15.
BMC Infect Dis ; 24(Suppl 1): 277, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438953

ABSTRACT

BACKGROUND: In 2018, the World Health Organization commenced a multi-country validation study of the Cepheid GeneXpert for a range of molecular-based point-of-care (POC) tests in primary care settings. One study arm focused on the evaluation of POC tests for screening 'women at risk' for chlamydia (CT), gonorrhoea (NG) and trichomonas (TV) in four countries - Australia, Guatemala, Morocco and South Africa. METHODS: Study participants completed a pre-test questionnaire which included demographics, clinical information and general questions on POC testing (POCT). Two vaginal swab samples (either self-collected or clinician collected) from each patient were tested on the GeneXpert at the POC and at a reference laboratory using quality-assured nucleic acid amplification tests (NAATs). RESULTS: One thousand three hundred and eighty-three women were enrolled: 58.6% from South Africa, 29.2% from Morocco, 6.2% from Guatemala, and 6.0% from Australia. 1296 samples for CT/NG and 1380 samples for TV were tested by the GeneXpert and the reference NAAT. The rate of unsuccessful tests on the GeneXpert was 1.9% for CT, 1.5% for NG and 0.96% for TV. The prevalence of CT, NG and TV was 31%, 13% and 23%, respectively. 1.5% of samples were positive for all three infections; 7.8% were positive for CT and NG; 2.4% were positive for NG and TV; and 7.3% were positive for CT and TV. Compared to reference NAATs, pooled estimates of sensitivity for the GeneXpert tests were 83.7% (95% confidence intervals 69.2-92.1) for CT, 90.5% (85.1-94.1) for NG and 64.7% (58.1-70.7) for TV (although estimates varied considerably between countries). Estimates for specificity were ≥96% for all three tests both within- and between-countries. Pooled positive and negative likelihood ratios were: 32.7 ([CI] 21.2-50.5) and 0.17 (0.08-0.33) for CT; 95.3 (36.9-245.7) and 0.10 (0.06-0.15) for NG; and 56.5 (31.6-101.1) and 0.35 (0.27-0.47) for TV. CONCLUSION: This multi-country evaluation is the first of its kind world-wide. Positive likelihood ratios, as well as specificity estimates, indicate the GeneXpert POC test results for CT, NG and TV were clinically acceptable for ruling in the presence of disease. However, negative likelihood ratios and variable sensitivity estimates from this study were poorer than expected for ruling out these infections, particularly for TV. TRIAL REGISTRATION: Ethics approval to conduct the ProSPeRo study was granted by the WHO Ethics Review Committee, as well as local ethics committees from all participating countries.


Subject(s)
Gonorrhea , Trichomonas vaginalis , Female , Humans , Trichomonas vaginalis/genetics , Chlamydia trachomatis/genetics , Gonorrhea/diagnosis , Gonorrhea/epidemiology , Guatemala/epidemiology , Morocco/epidemiology , South Africa/epidemiology , Neisseria gonorrhoeae/genetics , Australia , Point-of-Care Testing
16.
BMC Genomics ; 25(1): 290, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500064

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) of Neisseria gonorrhoeae is a threat to public health as strains have developed resistance to antimicrobials available for the treatment of gonorrhea. Whole genome sequencing (WGS) can detect and predict antimicrobial resistance to enhance the control and prevention of gonorrhea. Data on the molecular epidemiology of N. gonorrhoeae is sparse in Zambia. This study aimed to determine the genetic diversity of N. gonorrhoeae isolated from patients attending sexually transmitted infection (STI) clinics in Lusaka, Zambia. METHODS: A cross-sectional study that sequenced 38 N. gonorrhoeae isolated from 122 patients with gonorrhea from 2019 to 2020 was conducted. The AMR profiles were determined by the E-test, and the DNA was extracted using the NucliSens easyMaG magnetic device. Whole genome sequencing was performed on the Illumina NextSeq550 platform. The Bacterial analysis pipeline (BAP) that is readily available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 was used for the identification of the species, assembling the genome, multi-locus sequence typing (MLST), detection of plasmids and AMR genes. Phylogeny by single nucleotide polymorphisms (SNPs) was determined with the CCphylo dataset. RESULTS: The most frequent STs with 18.4% of isolates each were ST7363, ST1921 and ST1582, followed by ST1583 (13%), novel ST17026 (7.9%), ST1588 (7.9%), ST1596 (5.3%), ST11181 (5.3%), ST11750 (2.6/%) and ST11241 (2.6%) among the 38 genotyped isolates. The blaTeM-1B and tetM (55%) was the most prevalent combination of AMR genes, followed by blaTeM-1B (18.4%), tetM (15.8%), and the combination of blaTeM-1B, ermT, and tetL was 2.6% of the isolates. The AMR phenotypes were predicted in ciprofloxacin, penicillin, tetracycline, azithromycin, and cefixime. The combination of mutations 23.7% was gryA (S91F), parC (E91G), ponA (L421) and rpsJ (V57M), followed by 18.4% in gyrA (S91F), ponA (L421P), rpsJ (V57M), and 18.4% in gyrA (D95G, S91F), ponA (L421P), and rpsJ (V57M). The combinations in gyrA (D95G, S91F) and rpsJ (V57M), and gyrA (D95G, S91F), parC (E91F), ponA (L421P) and rpsJ (V57M) were 13.2% each of the isolates. Plasmid TEM-1 (84.2%), tetM (15.8%), and gonococcal genetic island (GGI) was detected in all isolates. CONCLUSION: This study revealed remarkable heterogeneity of N. gonorrhoeae with blaTEM-1, tetM, ponA, gyrA, and parC genes associated with high resistance to penicillin, tetracycline, and ciprofloxacin demanding revision of the standard treatment guidelines and improved antimicrobial stewardship in Zambia.


Subject(s)
Anti-Bacterial Agents , Gonorrhea , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Neisseria gonorrhoeae/genetics , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/microbiology , Multilocus Sequence Typing , Zambia/epidemiology , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Tetracycline , Ciprofloxacin , Penicillins , Microbial Sensitivity Tests
17.
ACS Infect Dis ; 10(4): 1298-1311, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38446051

ABSTRACT

Effective treatment of gonorrhea is threatened by the increasing prevalence of Neisseria gonorrhoeae strains resistant to the extended-spectrum cephalosporins (ESCs). Recently, we demonstrated the promise of the third-generation cephalosporin cefoperazone as an antigonococcal agent due to its rapid second-order rate of acylation against penicillin-binding protein 2 (PBP2) from the ESC-resistant strain H041 and robust antimicrobial activity against H041. Noting the presence of a ureido moiety in cefoperazone, we evaluated a subset of structurally similar ureido ß-lactams, including piperacillin, azlocillin, and mezlocillin, for activity against PBP2 from H041 using biochemical and structural analyses. We found that the ureidopenicillin piperacillin has a second-order rate of acylation against PBP2 that is 12-fold higher than cefoperazone and 85-fold higher than ceftriaxone and a lower MIC against H041 than ceftriaxone. Surprisingly, the affinity of ureidopenicillins for PBP2 is minimal, indicating that their inhibitory potency is due to a higher rate of the acylation step of the reaction compared to cephalosporins. Enhanced acylation results from the combination of a penam scaffold with a 2,3-dioxopiperazine-containing R1 group. Crystal structures show that the ureido ß-lactams overcome the effects of resistance mutations present in PBP2 from H041 by eliciting conformational changes that are hindered when PBP2 interacts with the weaker inhibitor ceftriaxone. Overall, our results support the potential of piperacillin as a treatment for gonorrhea and provide a framework for the future design of ß-lactams with improved activity against ESC-resistant N. gonorrhoeae.


Subject(s)
Ceftriaxone , Gonorrhea , Humans , Ceftriaxone/metabolism , Ceftriaxone/pharmacology , Neisseria gonorrhoeae/genetics , Gonorrhea/drug therapy , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Cefoperazone/pharmacology , Cephalosporins/pharmacology , Cephalosporins/metabolism , Piperacillin/metabolism , Piperacillin/pharmacology , beta-Lactams/pharmacology
18.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38529900

ABSTRACT

Multi-drug-resistant Neisseria gonorrhoeae infection is a significant public health risk. Rapidly detecting N. gonorrhoeae and antimicrobial-resistant (AMR) determinants by metagenomic sequencing of urine is possible, although high levels of host DNA and overgrowth of contaminating species hamper sequencing and limit N. gonorrhoeae genome coverage. We performed Nanopore sequencing of nucleic acid amplification test-positive urine samples and culture-positive urethral swabs with and without probe-based target enrichment, using a custom SureSelect panel, to investigate whether selective enrichment of N. gonorrhoeae DNA improves detection of both species and AMR determinants. Probes were designed to cover the entire N. gonorrhoeae genome, with tenfold enrichment of probes covering selected AMR determinants. Multiplexing was tested in a subset of samples. The proportion of sequence bases classified as N. gonorrhoeae increased in all samples after enrichment, from a median (IQR) of 0.05 % (0.01-0.1 %) to 76 % (42-82 %), giving a corresponding median improvement in fold genome coverage of 365 times (112-720). Over 20-fold coverage, required for robust AMR determinant detection, was achieved in 13/15(87 %) samples, compared to 2/15(13 %) without enrichment. The four samples multiplexed together also achieved >20-fold genome coverage. Coverage of AMR determinants was sufficient to predict resistance conferred by changes in chromosomal genes, where present, and genome coverage also enabled phylogenetic relationships to be reconstructed. Probe-based target enrichment can improve N. gonorrhoeae genome coverage when sequencing DNA extracts directly from urine or urethral swabs, allowing for detection of AMR determinants. Additionally, multiplexing prior to enrichment provided enough genome coverage for AMR detection and reduces the costs associated with this method.


Subject(s)
Anti-Infective Agents , Gonorrhea , Nanopore Sequencing , Humans , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Drug Resistance, Bacterial/genetics , Gonorrhea/diagnosis , DNA
19.
Sex Transm Infect ; 100(4): 222-225, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38553038

ABSTRACT

OBJECTIVES: We aimed to assess whether a self-collected oral rinse was non-inferior to clinician-collected oropharyngeal swabs to detect Neisseria gonorrhoeae (Ng) using culture and nucleic acid amplification tests (NAAT) among men who have sex with men (MSM), and whether Ng may still be detected in oral rinses for a minimum of 5 days after collection. METHODS: MSM with a positive Ng result in an oropharyngeal or pooled sample (oropharynx, urethra and anorectum) were approached. Clinician-collected oropharyngeal swabs and oral rinses (15 mL sterile water) were taken. Ng culture and NAAT (Abbott 2000m RealTime System CT/NG assay and in-house PCR) were performed. Diagnostic accuracy was assessed using sensitivity and specificity, and agreement between both techniques using Cohen's kappa statistic. Aliquots of positive oral rinses were left at room temperature for a minimum of 5 days and reanalysed using NAAT. Lastly, participants filled in a questionnaire to explore perceptions of both methods. RESULTS: We included 100 participants between June 2022 and October 2023. 45 individuals (45 of 100) had a positive Ng result in either the oral rinses (42 of 45, 93%) or the swabs (36 of 45, 80%). Sensitivity was higher for oral rinses than swabs (sensitivity=0.93/0.80, specificity=1.0/1.0, respectively) and agreement between both techniques was good (kappa=0.75, p<0.001). Of the 42 positive oral rinses, 37 remained positive after a minimum of 5 days (88.1%). Using culture, 18 individuals had a positive Ng result in either the oral rinses (8 of 18, 44%) or the swabs (16 of 18, 88%). Most participants found the oral rinse easy or very easy to use and would be willing to use the oral rinse for home-based sampling. CONCLUSION: We detected more oropharyngeal Ng infections via NAAT using oral rinses than swab samples. However, swabs were better than oral rinses for culturing Ng. Oral rinses might allow for home-based self-sampling to detect oropharyngeal Ng.


Subject(s)
Gonorrhea , Homosexuality, Male , Neisseria gonorrhoeae , Nucleic Acid Amplification Techniques , Oropharynx , Sensitivity and Specificity , Specimen Handling , Humans , Male , Neisseria gonorrhoeae/isolation & purification , Neisseria gonorrhoeae/genetics , Gonorrhea/diagnosis , Adult , Oropharynx/microbiology , Specimen Handling/methods , Belgium , Nucleic Acid Amplification Techniques/methods , Middle Aged , Urethra/microbiology , Young Adult
20.
J Antimicrob Chemother ; 79(5): 1081-1092, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517452

ABSTRACT

OBJECTIVES: Regular quality-assured WGS with antimicrobial resistance (AMR) and epidemiological data of patients is imperative to elucidate the shifting gonorrhoea epidemiology, nationally and internationally. We describe the dynamics of the gonococcal population in 11 cities in Brazil between 2017 and 2020 and elucidate emerging and disappearing gonococcal lineages associated with AMR, compare to Brazilian WGS and AMR data from 2015 to 2016, and explain recent changes in gonococcal AMR and gonorrhoea epidemiology. METHODS: WGS was performed using Illumina NextSeq 550 and genomes of 623 gonococcal isolates were used for downstream analysis. Molecular typing and AMR determinants were obtained and links between genomic lineages and AMR (determined by agar dilution/Etest) examined. RESULTS: Azithromycin resistance (15.6%, 97/623) had substantially increased and was mainly explained by clonal expansions of strains with 23S rRNA C2611T (mostly NG-STAR CC124) and mtr mosaics (mostly NG-STAR CC63, MLST ST9363). Resistance to ceftriaxone and cefixime remained at the same levels as in 2015-16, i.e. at 0% and 0.2% (1/623), respectively. Regarding novel gonorrhoea treatments, no known zoliflodacin-resistance gyrB mutations or gepotidacin-resistance gyrA mutations were found. Genomic lineages and sublineages showed a phylogenomic shift from sublineage A5 to sublineages A1-A4, while isolates within lineage B remained diverse in Brazil. CONCLUSIONS: Azithromycin resistance, mainly caused by 23S rRNA C2611T and mtrD mosaics/semi-mosaics, had substantially increased in Brazil. This mostly low-level azithromycin resistance may threaten the recommended ceftriaxone-azithromycin therapy, but the lack of ceftriaxone resistance is encouraging. Enhanced gonococcal AMR surveillance, including WGS, is imperative in Brazil and other Latin American and Caribbean countries.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Whole Genome Sequencing , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/classification , Brazil/epidemiology , Humans , Gonorrhea/microbiology , Gonorrhea/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Azithromycin/pharmacology , Male , Genome, Bacterial , Female , Adult , Molecular Epidemiology , Young Adult , Genomics , RNA, Ribosomal, 23S/genetics , Middle Aged , Ceftriaxone/pharmacology , Adolescent , Multilocus Sequence Typing , Cefixime/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...