Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anaerobe ; 39: 158-64, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26979345

ABSTRACT

Several natural anaerobic fungus-methanogen co-cultures have been isolated from rumen and feces source of herbivores with strong fiber degrading ability. In this study, we isolated 7 Neocallimastix with methanogen co-cultures from the rumen of yaks grazing on the Qinghai Tibetan Plateau. Based on morphological characteristics and internal transcribed spacer 1 sequences (ITS1), all the fungi were identified as Neocallimastix frontalis. The co-cultures were confirmed as the one fungus - one methanogen pattern by the PCR-denatured gradient gel electrophoresis (DGGE) assay. All the methanogens were identified as Methanobrevibacter ruminantium by 16s rRNA gene sequencing. We investigated the biodegrading capacity of the co-culture (N. frontalis + M. ruminantium) Yaktz1 on wheat straw, corn stalk and rice straw in a 7 days-incubation. The in vitro dry matter digestibility (IVDMD), acid detergent fiber digestibility (ADFD) and neural detergent fiber digestibility (NDFD) values of the substrates in the co-culture were significantly higher than those in the mono-culture N. frontalis Yaktz1. The co-culture exhibited high polysaccharide hydrolase (xylanase and FPase) and esterase activities. The xylanase in the co-culture reached the highest activity of 12500 mU/ml on wheat straw at the day 3 of the incubation. At the end of the incubation, 3.00 mmol-3.29 mmol/g dry matter of methane were produced by the co-culture. The co-culture also produced high level of acetate (40.00 mM-45.98 mM) as the end-product during the biodegradation. Interestingly, the N. frontalis Yaktz1 mono-culture produced large amount of lactate (8.27 mM-11.60 mM) and ethanol (163.11 mM-242.14 mM), many times more than those recorded in the previously reported anaerobic fungi. Our data suggests that the (N. frontalis + M. ruminantium) Yaktz1 co-culture and the N. frontalis Yaktz1 mono-culture both have great potentials for different industrial use.


Subject(s)
Dietary Fiber/metabolism , Gastrointestinal Microbiome/physiology , Methanobrevibacter/metabolism , Neocallimastix/metabolism , RNA, Ribosomal, 16S/genetics , Rumen/microbiology , Acetic Acid/metabolism , Anaerobiosis , Animals , Cattle , Coculture Techniques , Endo-1,4-beta Xylanases/metabolism , Esterases/metabolism , Ethanol/metabolism , Lactic Acid/metabolism , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Neocallimastix/genetics , Neocallimastix/isolation & purification , Poaceae/metabolism , Sequence Analysis, DNA
2.
J Appl Microbiol ; 118(3): 565-73, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25495284

ABSTRACT

AIMS: To identify whether the supplement of anaerobic fungi isolates with cellulolytic activities accelerates the silage fermentation. METHODS AND RESULTS: Three fungal isolates with the highest cellulolytic activities among 45 strains of anaerobic fungal stock in our laboratory were selected and used as silage inoculants. The rice straw (RS) was ensiled for 10, 30, 60, 90 and 120 days with four treatments of anaerobic fungi derived from the control (no fungus), Piromyces M014 (isolated from the rumen of the Korean native goat), Orpinomyces R001 (isolated from the duodenum of Korean native cattle) and Neocallimastix M010 (isolated from the guts of termites), respectively. The silages inoculated with pure strains of fungi showed a higher fungal population (P < 0.05) when compared to the control silage. In situ ruminal DM disappearance of RS silage (RSS) was improved with fungal treatment. SEM observation showed live fungal cells inoculated in RS could survive during the ensiling process. Overall, this study indicated that the inoculation of anaerobic fungi decreased the cell wall content of the RSS and increased in situ dry matter disappearance. CONCLUSIONS: The supplementation of anaerobic fungi isolates to RSS as a silage inoculant improves the RSS quality. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study showing the potential application of supplement of anaerobic fungi isolated from the guts may be applied industrially as an alternate feed additive that improves the silage quality.


Subject(s)
Fermentation , Fungi/metabolism , Oryza , Silage , Anaerobiosis , Animals , Cattle , Neocallimastigales/isolation & purification , Neocallimastix/isolation & purification , Piromyces/isolation & purification , Rumen/microbiology , Silage/microbiology
3.
Biochem Biophys Res Commun ; 451(2): 190-5, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25073115

ABSTRACT

Understanding the roles of the components of the multienzyme complex of the anaerobial cellulase system, acting on complex substrates, is crucial to the development of efficient cellulase systems for industrial applications such as converting lignocellulose to sugars for bioethanol production. In this study, we purified the multienzyme complex of Neocallimastix patriciarum J11 from a broth through cellulose affinity purification. The multienzyme complex is composed of at least 12 comprised proteins, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eight of these constituents have demonstrated ß-glucanase activity on zymogram analysis. The multienzyme complex contained scaffoldings that respond to the gathering of the cellulolytic components. The levels and subunit ratio of the multienzyme complex from N. patriciarum J11 might have been affected by their utilized carbon sources, whereas the components of the complexes were consistent. The trypsin-digested peptides of six proteins were matched to the sequences of cellulases originating from rumen fungi, based on identification through liquid chromatography/mass spectrometry, revealing that at least three types of cellulase, including one endoglucanase and two exoglucanases, could be found in the multienzyme complex of N. patriciarum J11. The cellulolytic subunits could hydrolyze synergistically on both the internal bonds and the reducing and nonreducing ends of cellulose. Based on our research, our findings are the first to depict the composition of the multienzyme complex produced by N. patriciarum J11, and this complex is composed of scaffoldin and three types of cellulase.


Subject(s)
Cellulases/isolation & purification , Fungal Proteins/isolation & purification , Multienzyme Complexes/isolation & purification , Neocallimastix/enzymology , Animals , Blotting, Western , Buffaloes/microbiology , Cellulases/genetics , Cellulases/metabolism , Chromatography, Gel , Fungal Proteins/genetics , Fungal Proteins/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Neocallimastix/isolation & purification , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rumen/microbiology , Tandem Mass Spectrometry
4.
J Anim Physiol Anim Nutr (Berl) ; 97(2): 363-73, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22369648

ABSTRACT

Rumen fungus Neocallimastix sp. YAK11 was isolated from yak (Bos grunniens), and three consecutive 10-day pure cultures were anaerobically performed at 39 °C in 20-ml Hungate's tubes to explore ferulic acid esterase (FAE) and acetyl esterase (AE) activity profiles of the fungus grown on whole hay fraction of Chinese wildrye grass (Leymus chinensis) (WHOcw , n = 4) and its neutral detergent fibre fraction (NDFcw , n = 4), respectively. An aliquot of 0.7-ml culture was sampled daily using a sterile syringe, and 0.7-ml fresh medium was immediately added to the tubes to compensate for the withdrawn samples. Peak esterase activity occurred for FAE on day 5 (p < 0.001) and for AE on day 6 (p < 0.001). The mean activities of FAE and AE in WHOcw were 2.07 and 1.29 times of those in NDFcw (p < 0.001). Both FAE and AE activities were positively correlated with xylanase (r > 0.65, p < 0.001) and carboxymethyl cellulase (r > 0.57, p < 0.001) activities. Total volatile fatty acid concentration was positively correlated with enzyme activities of AE (r > 0.87, p < 0.001), FAE (r > 0.82, p < 0.001) and xylanase (r > 0.56, p < 0.001). Crude enzyme solution was harvested for the fungus grown on WHOcw , and the pH optimum of FAE activity was 8.0 while the optimum for AE was 9.0. Both FAE and AE had a broad pH stability range. The optimal temperatures for FAE and AE activity were 40 and 50 °C. The Michaelis constant (Km ) and maximum velocity (Vmax ) for FAE against methyl ferulate at pH 6.0 and 39 °C were 0.078 mm and 2.93 mU, respectively. The Km and Vmax for AE against p-nitrophenyl acetate at pH 7.0 and 39 °C were 2.73 mm and 666.67 mU, respectively. Both FAE and AE may have prospective advantages for the enzymatic degradation of roughages in ruminant animals.


Subject(s)
Acetylesterase/classification , Carboxylic Ester Hydrolases/classification , Cattle/microbiology , Neocallimastix/enzymology , Rumen/microbiology , Acetylesterase/genetics , Acetylesterase/metabolism , Animals , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Fungal/physiology , Neocallimastix/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...