Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.731
Filter
1.
Biomolecules ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786001

ABSTRACT

During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.


Subject(s)
Extracellular Matrix Proteins , Mice, Knockout , Neocortex , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Mice , Neocortex/metabolism , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Neurons/metabolism , Nerve Net/metabolism , Nerve Net/growth & development , Somatosensory Cortex/metabolism , Somatosensory Cortex/growth & development
2.
J Biotechnol ; 389: 1-12, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38697361

ABSTRACT

Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.


Subject(s)
Action Potentials , Aging , Interneurons , Neocortex , Humans , Neocortex/physiology , Neocortex/cytology , Aged , Interneurons/physiology , Aged, 80 and over , Adult , Aging/physiology , Adolescent , Child , Middle Aged , Action Potentials/physiology , Male , Young Adult , Female
3.
Science ; 384(6698): eadh7688, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781356

ABSTRACT

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.


Subject(s)
Neocortex , Protein Isoforms , Single-Cell Analysis , Transcriptome , Humans , Neocortex/metabolism , Neocortex/embryology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Mental Disorders/genetics , RNA Splicing , Genetic Predisposition to Disease , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , Molecular Sequence Annotation
4.
Neurology ; 102(12): e209447, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38810211

ABSTRACT

BACKGROUND AND OBJECTIVES: Self-reported cognitive decline is an early behavioral manifestation of Alzheimer disease (AD) at the preclinical stage, often believed to precede concerns reported by a study partner. Previous work shows cross-sectional associations with ß-amyloid (Aß) status and self-reported and study partner-reported cognitive decline, but less is known about their associations with tau deposition, particularly among those with preclinical AD. METHODS: This cross-sectional study included participants from the Anti-Amyloid Treatment in Asymptomatic AD/Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies (N = 444) and the Harvard Aging Brain Study and affiliated studies (N = 231), which resulted in a cognitively unimpaired (CU) sample of individuals with both nonelevated (Aß-) and elevated Aß (Aß+). All participants and study partners completed the Cognitive Function Index (CFI). Two regional tau composites were derived by averaging flortaucipir PET uptake in the medial temporal lobe (MTL) and neocortex (NEO). Global Aß PET was measured in Centiloids (CLs) with Aß+ >26 CL. We conducted multiple linear regression analyses to test associations between tau PET and CFI, covarying for amyloid, age, sex, education, and cohort. We also controlled for objective cognitive performance, measured using the Preclinical Alzheimer Cognitive Composite (PACC). RESULTS: Across 675 CU participants (age = 72.3 ± 6.6 years, female = 59%, Aß+ = 60%), greater tau was associated with greater self-CFI (MTL: ß = 0.28 [0.12, 0.44], p < 0.001, and NEO: ß = 0.26 [0.09, 0.42], p = 0.002) and study partner CFI (MTL: ß = 0.28 [0.14, 0.41], p < 0.001, and NEO: ß = 0.31 [0.17, 0.44], p < 0.001). Significant associations between both CFI measures and MTL/NEO tau PET were driven by Aß+. Continuous Aß showed an independent effect on CFI in addition to MTL and NEO tau for both self-CFI and study partner CFI. Self-CFI (ß = 0.01 [0.001, 0.02], p = 0.03), study partner CFI (ß = 0.01 [0.003, 0.02], p = 0.01), and the PACC (ß = -0.02 [-0.03, -0.01], p < 0.001) were independently associated with MTL tau, but for NEO tau, PACC (ß = -0.02 [-0.03, -0.01], p < 0.001) and study partner report (ß = 0.01 [0.004, 0.02], p = 0.002) were associated, but not self-CFI (ß = 0.01 [-0.001, 0.02], p = 0.10). DISCUSSION: Both self-report and study partner report showed associations with tau in addition to Aß. Additionally, self-report and study partner report were associated with tau above and beyond performance on a neuropsychological composite. Stratification analyses by Aß status indicate that associations between self-reported and study partner-reported cognitive concerns with regional tau are driven by those at the preclinical stage of AD, suggesting that both are useful to collect on the early AD continuum.


Subject(s)
Amyloid beta-Peptides , Cognitive Dysfunction , Positron-Emission Tomography , tau Proteins , Humans , Female , Male , Aged , tau Proteins/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Self Report , Cohort Studies , Temporal Lobe/metabolism , Temporal Lobe/diagnostic imaging , Middle Aged , Neocortex/metabolism , Neocortex/diagnostic imaging
5.
Cell Rep ; 43(5): 114212, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743567

ABSTRACT

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Subject(s)
Interneurons , Interneurons/metabolism , Animals , Mice , Neuropeptide Y/metabolism , Neocortex/metabolism , Neocortex/cytology , Neocortex/physiology , Vasoactive Intestinal Peptide/metabolism , Male , Parvalbumins/metabolism
6.
J Comp Neurol ; 532(6): e25631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813760

ABSTRACT

The plains vizcacha, Lagostomus maximus, is a precocial hystricomorph rodent with a gyrencephalic brain. This work aimed to perform a time-lapse analysis of the embryonic brain cortical development in the plains vizcacha to establish a species-specific temporal window for corticogenesis and the gyrencephaly onset. Additionally, a comparative examination with evolutionarily related rodents was conducted. Embryos from 40 embryonic days (ED) until the end of pregnancy ( ∼ $\sim $ 154 ED) were evaluated. The neuroanatomical examination determined transverse sulci at 80 ED and rostral lateral and caudal intraparietal sulci around 95 ED. Histological examination of corticogenesis showed emergence of the subplate at 43 ED and expansion of the subventricular zone (SVZ) and its division into inner and outer SVZs around 54 ED. The neocortical layers formation followed an inside-to-outside spatiotemporal gradient beginning with the emergence of layers VI and V at 68 ED and establishing the final six neocortical layers around 100 ED. A progressive increment of gyrencephalization index (GI) from 1.005 ± 0.003 around 70 ED, which reflects a smooth cortex, up to 1.07 ± 0.009 at the end of gestation, reflecting a gyrencephalic neuroanatomy, was determined. Contrarily, the minimum cortical thickness (MCT) progressively decreased from 61 ED up to the end of gestation. These results show that the decrease in the cortical thickness, which enables the onset of neocortical invaginations, occurs together with the expansion and subdivision of the SVZ. The temporal comparison of corticogenesis in plains vizcacha with that in relative species reflects a prenatal long process compared with other rodents that may give an evolutionary advantage to L. maximus as a precocial species.


Subject(s)
Cerebral Cortex , Rodentia , Animals , Cerebral Cortex/growth & development , Rodentia/anatomy & histology , Female , Pregnancy , Neurogenesis/physiology , Neocortex/growth & development
7.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38808733

ABSTRACT

The flow of neural activity across the neocortex during active sensory discrimination is constrained by task-specific cognitive demands, movements, and internal states. During behavior, the brain appears to sample from a broad repertoire of activation motifs. Understanding how these patterns of local and global activity are selected in relation to both spontaneous and task-dependent behavior requires in-depth study of densely sampled activity at single neuron resolution across large regions of cortex. In a significant advance toward this goal, we developed procedures to record mesoscale 2-photon Ca2+ imaging data from two novel in vivo preparations that, between them, allow for simultaneous access to nearly all 0f the mouse dorsal and lateral neocortex. As a proof of principle, we aligned neural activity with both behavioral primitives and high-level motifs to reveal the existence of large populations of neurons that coordinated their activity across cortical areas with spontaneous changes in movement and/or arousal. The methods we detail here facilitate the identification and exploration of widespread, spatially heterogeneous neural ensembles whose activity is related to diverse aspects of behavior.


Subject(s)
Behavior, Animal , Neurons , Wakefulness , Animals , Mice , Wakefulness/physiology , Neurons/physiology , Behavior, Animal/physiology , Neocortex/physiology , Neocortex/diagnostic imaging , Male , Calcium/metabolism , Microscopy, Fluorescence, Multiphoton/methods
8.
Methods Mol Biol ; 2794: 187-200, 2024.
Article in English | MEDLINE | ID: mdl-38630230

ABSTRACT

In utero electroporation (IUE) enables labeling and manipulating specific types of cells by introducing DNA plasmids with desired promoters. After the surgery, mouse brains are fixed at any stage and analyzed after staining using specific antibodies. Here, we describe the flow of the IUE experiment from the preparation to microscopic observations.


Subject(s)
Electroporation , Neocortex , Animals , Mice , Cell Differentiation , Specimen Handling , Antibodies
9.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38572735

ABSTRACT

Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.


Subject(s)
Neocortex , Mice , Animals , Neocortex/metabolism , Interneurons/physiology , Learning/physiology , Conditioning, Classical/physiology , Parvalbumins/metabolism
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38610088

ABSTRACT

The axons of neocortical pyramidal neurons are frequently myelinated. Heterogeneity in the topography of axonal myelination in the cerebral cortex has been attributed to a combination of electrophysiological activity, axonal morphology, and neuronal-glial interactions. Previously, we showed that axonal segment length and caliber are critical local determinants of fast-spiking interneuron myelination. However, the factors that determine the myelination of individual axonal segments along neocortical pyramidal neurons remain largely unexplored. Here, we used structured illumination microscopy to examine the extent to which axonal morphology is predictive of the topography of myelination along neocortical pyramidal neurons. We identified critical thresholds for axonal caliber and interbranch distance that are necessary, but not sufficient, for myelination of pyramidal cell axons in mouse primary somatosensory cortex (S1). Specifically, we found that pyramidal neuron axonal segments with a caliber < 0.24 µm or interbranch distance < 18.10 µm are rarely myelinated. Moreover, we further confirmed that these findings in mice are similar for human neocortical pyramidal cell myelination (caliber < 0.25 µm, interbranch distance < 19.00 µm), suggesting that this mechanism is evolutionarily conserved. Taken together, our findings suggest that axonal morphology is a critical correlate of the topography and cell-type specificity of neocortical myelination.


Subject(s)
Neocortex , Pyramidal Cells , Humans , Animals , Mice , Axons , Myelin Sheath , Interneurons
11.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588430

ABSTRACT

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Subject(s)
Cerebral Cortex , Neocortex , Mice , Animals , Cerebral Cortex/metabolism , Cell Movement/physiology , Neurogenesis/physiology , Interneurons/physiology , Biomarkers/metabolism , GABAergic Neurons/physiology
12.
J Theor Biol ; 588: 111818, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38621583

ABSTRACT

The standard consolidation theory states that short-term memories located in the hippocampus enable the consolidation of long-term memories in the neocortex. In other words, the neocortex slowly learns long-term memories with a transient support of the hippocampus that quickly learns unstable memories. However, it is not clear yet what could be the neurobiological mechanisms underlying these differences in learning rates and memory time-scales. Here, we propose a novel modeling approach of the standard consolidation theory, that focuses on its potential neurobiological mechanisms. In addition to synaptic plasticity and spike frequency adaptation, our model incorporates adult neurogenesis in the dentate gyrus as well as the difference in size between the neocortex and the hippocampus, that we associate with distance-dependent synaptic plasticity. We also take into account the interconnected spatial structure of the involved brain areas, by incorporating the above neurobiological mechanisms in a coupled neural field framework, where each area is represented by a separate neural field with intra- and inter-area connections. To our knowledge, this is the first attempt to apply neural fields to this process. Using numerical simulations and mathematical analysis, we explore the short-term and long-term dynamics of the model upon alternance of phases of hippocampal replay and retrieval cue of an external input. This external input is encodable as a memory pattern in the form of a multiple bump attractor pattern in the individual neural fields. In the model, hippocampal memory patterns become encoded first, before neocortical ones, because of the smaller distances between the bumps of the hippocampal memory patterns. As a result, retrieval of the input pattern in the neocortex at short time-scales necessitates the additional input delivered by the memory pattern of the hippocampus. Neocortical memory patterns progressively consolidate at longer times, up to a point where their retrieval does not need the support of the hippocampus anymore. At longer times, perturbation of the hippocampal neural fields by neurogenesis erases the hippocampus pattern, leading to a final state where the memory pattern is exclusively evoked in the neocortex. Therefore, the dynamics of our model successfully reproduces the main features of the standard consolidation theory. This suggests that neurogenesis in the hippocampus and distance-dependent synaptic plasticity coupled to synaptic depression and spike frequency adaptation, are indeed critical neurobiological processes in memory consolidation.


Subject(s)
Hippocampus , Memory Consolidation , Models, Neurological , Neuronal Plasticity , Neuronal Plasticity/physiology , Humans , Hippocampus/physiology , Memory Consolidation/physiology , Neocortex/physiology , Animals , Neurogenesis/physiology
13.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38653560

ABSTRACT

Forebrain neurons deprived of activity become hyperactive when activity is restored. Rebound activity has been linked to spontaneous seizures in vivo following prolonged activity blockade. Here, we measured the time course of rebound activity and the contributing circuit mechanisms using calcium imaging, synaptic staining, and whole-cell patch clamp in organotypic slice cultures of mouse neocortex. Calcium imaging revealed hypersynchronous activity increasing in intensity with longer periods of deprivation. While activity partially recovered 3 d after slices were released from 5 d of deprivation, they were less able to recover after 10 d of deprivation. However, even after the longer period of deprivation, activity patterns eventually returned to baseline levels. The degree of deprivation-induced rebound was age-dependent, with the greatest effects occurring when silencing began in the second week. Pharmacological blockade of NMDA receptors indicated that hypersynchronous rebound activity did not require activation of Hebbian plasticity. In single-neuron recordings, input resistance roughly doubled with a concomitant increase in intrinsic excitability. Synaptic imaging of pre- and postsynaptic proteins revealed dramatic reductions in the number of presumptive synapses with a larger effect on inhibitory than excitatory synapses. Putative excitatory synapses colocalizing PSD-95 and Bassoon declined by 39 and 56% following 5 and 10 d of deprivation, but presumptive inhibitory synapses colocalizing gephyrin and VGAT declined by 55 and 73%, respectively. The results suggest that with prolonged deprivation, a progressive reduction in synapse number is accompanied by a shift in the balance between excitation and inhibition and increased cellular excitability.


Subject(s)
Disks Large Homolog 4 Protein , Neocortex , Animals , Neocortex/physiology , Disks Large Homolog 4 Protein/metabolism , Neurons/physiology , Neurons/metabolism , Organ Culture Techniques , Synapses/physiology , Patch-Clamp Techniques , Mice , Mice, Inbred C57BL , Female , Calcium/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Time Factors , Nerve Tissue Proteins
14.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674342

ABSTRACT

Hypophosphatasia is a rare inherited metabolic disorder caused by the deficiency of tissue-nonspecific alkaline phosphatase. More severe and early onset cases present symptoms of muscle weakness, diminished motor coordination, and epileptic seizures. These neurological manifestations are poorly characterized. Thus, it is urgent to discover novel differentially expressed genes for investigating the genetic mechanisms underlying the neurological manifestations of hypophosphatasia. RNA-sequencing data offer a high-resolution and highly accurate transcript profile. In this study, we apply an empirical Bayes model to RNA-sequencing data acquired from the spinal cord and neocortex tissues of a mouse model, individually, to more accurately estimate the genetic effects without bias. More importantly, we further develop two integration methods, weighted gene approach and weighted Z method, to incorporate two RNA-sequencing data into a model for enhancing the effects of genetic markers in the diagnostics of hypophosphatasia disease. The simulation and real data analysis have demonstrated the effectiveness of our proposed integration methods, which can maximize genetic signals identified from the spinal cord and neocortex tissues, minimize the prediction error, and largely improve the prediction accuracy in risk prediction.


Subject(s)
Alkaline Phosphatase , Bayes Theorem , Hypophosphatasia , Hypophosphatasia/genetics , Animals , Mice , Alkaline Phosphatase/genetics , Sequence Analysis, RNA/methods , Spinal Cord/metabolism , Spinal Cord/pathology , Humans , Disease Models, Animal , Neocortex/metabolism , Neocortex/pathology
15.
Chemosphere ; 358: 142124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677614

ABSTRACT

Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase 5 , Metformin , Neocortex , Metformin/pharmacology , Animals , Female , Pregnancy , Neocortex/drug effects , Cyclin-Dependent Kinase 5/metabolism , Rats , Cell Proliferation/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , MAP Kinase Signaling System/drug effects , Neurons/drug effects , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Neurogenesis/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Signal Transduction/drug effects
16.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38637152

ABSTRACT

Canonically, action potentials of most mammalian neurons initiate at the axon initial segment (AIS) and propagate bidirectionally: orthodromically along the distal axon and retrogradely into the soma and dendrites. Under some circumstances, action potentials may initiate ectopically, at sites distal to the AIS, and propagate antidromically along the axon. These "ectopic action potentials" (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in the upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common and may contribute to both normal and pathological network functions of the neocortex.


Subject(s)
Action Potentials , Interneurons , Mice, Transgenic , Neocortex , Parvalbumins , Animals , Parvalbumins/metabolism , Interneurons/physiology , Interneurons/metabolism , Neocortex/physiology , Action Potentials/physiology , Male , Mice , Female , Mice, Inbred C57BL , Pyramidal Cells/physiology , Somatostatin/metabolism
17.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581678

ABSTRACT

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Subject(s)
Autistic Disorder , Disease Models, Animal , Estrogen Receptor alpha , Mice, Knockout , Neocortex , PTEN Phosphohydrolase , Receptor, Metabotropic Glutamate 5 , Animals , Female , Male , Mice , Autistic Disorder/metabolism , Autistic Disorder/physiopathology , Autistic Disorder/genetics , Autistic Disorder/pathology , Estrogen Receptor alpha/metabolism , Mice, Inbred C57BL , Neocortex/metabolism , Neocortex/pathology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Pyramidal Cells/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Social Behavior
18.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612801

ABSTRACT

The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.


Subject(s)
Astrocytes , Neocortex , Animals , Mice , Receptors, N-Methyl-D-Aspartate , Neurons , Glutamic Acid , Ion Channels
19.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , Clone Cells , Mosaicism , Neurons , Prosencephalon , Aged , Female , Humans , Alleles , Cell Lineage/genetics , Clone Cells/cytology , Clone Cells/metabolism , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Hippocampus/cytology , Homeodomain Proteins/metabolism , Neocortex/cytology , Neural Inhibition , Neurons/cytology , Neurons/metabolism , Parietal Lobe/cytology , Prosencephalon/anatomy & histology , Prosencephalon/cytology , Prosencephalon/metabolism , Single-Cell Analysis , Transcriptome/genetics
20.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38655654

ABSTRACT

Foxg1 masters telencephalic development via a pleiotropic control over its progression. Expressed within the central nervous system (CNS), L1 retrotransposons are implicated in progression of its histogenesis and tuning of its genomic plasticity. Foxg1 represses gene transcription, and L1 elements share putative Foxg1-binding motifs, suggesting the former might limit telencephalic expression (and activity) of the latter. We tested such a prediction, in vivo as well as in engineered primary neural cultures, using loss- and gain-of-function approaches. We found that Foxg1-dependent, transcriptional L1 repression specifically occurs in neopallial neuronogenic progenitors and post-mitotic neurons, where it is supported by specific changes in the L1 epigenetic landscape. Unexpectedly, we discovered that Foxg1 physically interacts with L1-mRNA and positively regulates neonatal neopallium L1-DNA content, antagonizing the retrotranscription-suppressing activity exerted by Mov10 and Ddx39a helicases. To the best of our knowledge, Foxg1 represents the first CNS patterning gene acting as a bimodal retrotransposon modulator, limiting transcription of L1 elements and promoting their amplification, within a specific domain of the developing mouse brain.


Subject(s)
Forkhead Transcription Factors , Gene Expression Regulation, Developmental , Neocortex , Nerve Tissue Proteins , RNA, Messenger , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Neocortex/metabolism , Neocortex/embryology , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Retroelements/genetics , DNA/metabolism , DNA/genetics , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...