Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 908
Filter
1.
Front Biosci (Landmark Ed) ; 29(5): 173, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38812305

ABSTRACT

BACKGROUND: Neointimal hyperplasia (NIH) is the pathological basis of vascular injury disease. Vascular cells are the dominant cells in the process of NIH, but the extent of heterogeneity amongst them is still unclear. METHODS: A mouse model of NIH was constructed by inducing carotid artery ligation. Single-cell sequencing was then used to analyze the transcriptional profile of vascular cells. Cluster features were determined by functional enrichment analysis, gene set scoring, pseudo-time analysis, and cell-cell communication analysis. Additionally, immunofluorescence staining was conducted on vascular tissues from fibroblast lineage-traced (PdgfraDreER-tdTomato) mice to validate the presence of Pecam1+Pdgfra+tdTomato+ cells. RESULTS: The left carotid arteries (ligation) were compared to right carotid arteries (sham) from ligation-induced NIH C57BL/6 mice. Integrative analyses revealed a high level of heterogeneity amongst vascular cells, including fourteen clusters and seven cell types. We focused on three dominant cell types: endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and fibroblasts. The major findings were: (1) four subpopulations of ECs, including ECs4, mesenchymal-like ECs (ECs1 and ECs2), and fibro-like ECs (ECs3); (2) four subpopulations of fibroblasts, including pro-inflammatory Fibs-1, Sca1+ Fibs-2, collagen-producing Fibs-3, and mesenchymal-like Fibs-4; (3) four subpopulations of vSMCs, including vSMCs-1, vSMCs-2, vSMCs-3, and vSMCs-3-derived vSMCs; (4) ECs3 express genes related to extracellular matrix (ECM) remodeling and cell migration, and fibro-like vSMCs showed strong chemokine secretion and relatively high levels of proteases; (5) fibro-like vSMCs that secrete Vegfa interact with ECs mainly through vascular endothelial growth factor receptor 2 (Vegfr2). CONCLUSIONS: This study presents the dynamic cellular landscape within NIH arteries and reveals potential relationships between several clusters, with a specific focus on ECs3 and fibro-like vSMCs. These two subpopulations may represent potential target cells for the treatment of NIH.


Subject(s)
Gene Expression Profiling , Hyperplasia , Mice, Inbred C57BL , Muscle, Smooth, Vascular , Neointima , Single-Cell Analysis , Animals , Neointima/pathology , Neointima/metabolism , Neointima/genetics , Single-Cell Analysis/methods , Hyperplasia/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Carotid Arteries/pathology , Carotid Arteries/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Fibroblasts/metabolism , Fibroblasts/pathology , Disease Models, Animal , Single-Cell Gene Expression Analysis
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732029

ABSTRACT

Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. Vitamin D receptor activation modulates the biology of vascular smooth muscle cells and has been reported to protect from neointimal hyperplasia following endothelial injury. However, the molecular mechanisms are poorly understood. We have now explored the impact of the selective vitamin D receptor activator, paricalcitol, on neointimal hyperplasia, following guidewire-induced endothelial cell injury in rats, and we have assessed the impact of paricalcitol or vehicle on the expression of key cell stress factors. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the expression of the growth factor growth/differentiation factor-15 (GDF-15), the cytokine receptor CD74, NFκB-inducing kinase (NIK, an upstream regulator of the proinflammatory transcription factor NFκB) and the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Immunohistochemistry confirmed the increased expression of the cellular proteins CD74 and NIK. Paricalcitol (administered in doses of 750 ng/kg of body weight, every other day) had a non-significant impact on neointimal hyperplasia and luminal stenosis. However, it significantly decreased GDF-15, CD74, NIK and MCP-1/CCL2 mRNA expression, which in paricalcitol-injured arteries remained within the levels found in control vehicle sham arteries. In conclusion, paricalcitol had a dramatic effect, suppressing the stress response to guidewire-induced endothelial cell injury, despite a limited impact on neointimal hyperplasia and luminal stenosis. This observation identifies novel molecular targets of paricalcitol in the vascular system, whose differential expression cannot be justified as a consequence of improved tissue injury.


Subject(s)
Anti-Inflammatory Agents , Chemokine CCL2 , Ergocalciferols , Hyperplasia , Animals , Rats , Ergocalciferols/pharmacology , Male , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Anti-Inflammatory Agents/pharmacology , Neointima/metabolism , Neointima/pathology , Neointima/drug therapy , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Tunica Intima/pathology , Tunica Intima/drug effects , Tunica Intima/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Histocompatibility Antigens Class II
3.
Thromb Res ; 238: 185-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729030

ABSTRACT

BACKGROUND: Plaque erosion, a type of coronary atherothrombosis, involves superficial injury to smooth muscle cell (SMC)-rich plaques. Elevated levels of coagulation factor VIII (FVIII) correlate with an increased ischemic heart disease risk. FVIII may contribute to thrombus formation on eroded plaques. AIMS: We aimed to elucidate the role of elevated FVIII in arterial thrombus formation within SMC-rich neointima in rabbits. METHODS AND RESULTS: We assessed the effect of recombinant human FVIII (rFVIII) on blood coagulation in vitro and platelet aggregation ex vivo. An SMC-rich neointima was induced through balloon injury to the unilateral femoral artery. Three weeks after the first balloon injury, superficial erosive injury and thrombus formation were initiated with a second balloon injury of the bilateral femoral arteries 45 min after the administration of rFVIII (100 IU/kg) or saline. The thrombus area and contents were histologically measured 15 min after the second balloon injury. rFVIII administration reduced the activated partial thromboplastin time and augmented botrocetin-induced, but not collagen- or adenosine 5'-diphosphate-induced, platelet aggregation. While rFVIII did not influence platelet-thrombus formation in normal intima, it increased thrombus formation on SMC-rich neointima post-superficial erosive injury. Enhanced immunopositivity for glycoprotein IIb/IIIa and fibrin was observed in rFVIII-administered SMC-rich neointima. Neutrophil count in the arterial thrombus on the SMC-rich neointima correlated positively with thrombus size in the control group, unlike the rFVIII group. CONCLUSIONS: Increased FVIII contributes to thrombus propagation within erosive SMC-rich neointima, highlighting FVIII's potential role in plaque erosion-related atherothrombosis.


Subject(s)
Factor VIII , Myocytes, Smooth Muscle , Neointima , Thrombosis , Rabbits , Animals , Neointima/pathology , Neointima/blood , Thrombosis/blood , Thrombosis/pathology , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Tunica Intima/pathology , Tunica Intima/drug effects , Humans , Platelet Aggregation/drug effects , Femoral Artery/pathology , Femoral Artery/injuries
4.
Nat Commun ; 15(1): 3743, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702316

ABSTRACT

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


Subject(s)
HSP90 Heat-Shock Proteins , Hyperplasia , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Neointima , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Animals , Humans , Male , Mice , Arteriovenous Fistula/metabolism , Arteriovenous Fistula/genetics , Arteriovenous Fistula/pathology , Cell Proliferation , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Neointima/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
5.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589823

ABSTRACT

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Subject(s)
Glucosephosphate Dehydrogenase , Muscle, Smooth, Vascular , Voltage-Dependent Anion Channel 1 , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Becaplermin/genetics , Becaplermin/metabolism , Cell Proliferation , bcl-2-Associated X Protein/metabolism , Glucosephosphate Dehydrogenase/metabolism , Muscle, Smooth, Vascular/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Apoptosis , Myocytes, Smooth Muscle/metabolism , Cell Movement/genetics , Cells, Cultured , Phenotype
6.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Article in English | MEDLINE | ID: mdl-38583797

ABSTRACT

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Subject(s)
HMGB1 Protein , Hyperplasia , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , RNA Stability , STAT3 Transcription Factor , Tunica Intima , Animals , Humans , Male , Mice , Cell Movement , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Tunica Intima/metabolism , Tunica Intima/pathology
7.
J Cell Physiol ; 239(5): e31251, 2024 May.
Article in English | MEDLINE | ID: mdl-38634445

ABSTRACT

Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.


Subject(s)
Cell Dedifferentiation , Cell Proliferation , Kruppel-Like Transcription Factors , Microfilament Proteins , Muscle Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Repressor Proteins , Animals , Humans , Male , Mice , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Carotid Artery Injuries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Neointima/genetics , Phenotype , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Cell Cycle Proteins , Microfilament Proteins/genetics
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631407

ABSTRACT

Intimal hyperplasia (IH) is a common pathological feature of vascular proliferative diseases, such as atherosclerosis and restenosis after angioplasty. Urotensin II (UII) and its receptor (UTR) are widely expressed in cardiovascular tissues. However, it remains unclear whether the UII/UTR system is involved in IH. Right unilateral common carotid artery ligation was performed and maintained for 21 days to induce IH in UTR knockout (UTR-/-) and wild-type (WT) mice. Histological analysis revealed that compared with WT mice, UTR-deficient mice exhibited a decreased neointimal area, angiostenosis and intima-media ratio. Immunostaining revealed fewer smooth muscle cells (SMCs), endothelial cells and macrophages in the lesions of UTR-/- mice than in those of WT mice. Protein interaction analysis suggested that the UTR may affect cell proliferation by regulating YAP and its downstream target genes. In vitro experiments revealed that UII can promote the proliferation and migration of SMCs, and western blotting also revealed that UII increased the protein expression of RhoA, CTGF, Cyclin D1 and PCNA and downregulated p-YAP protein expression, while these effects could be partly reversed by urantide. To evaluate the translational value of UTRs in IH management, WT mice were also treated with two doses of urantide, a UTR antagonist, to confirm the benefit of UTR blockade in IH progression. A high dose of urantide (600 µg/kg/day), rather than a low dose (60 µg/kg/day), successfully improved ligation-induced IH compared with that in mice receiving vehicle. The results of the present study suggested that the UII/UTR system may regulate IH partly through the RhoA-YAP signaling pathway.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Proliferation , Hyperplasia , Mice, Knockout , Receptors, G-Protein-Coupled , Signal Transduction , YAP-Signaling Proteins , rhoA GTP-Binding Protein , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Movement , Hyperplasia/metabolism , Hyperplasia/pathology , Ligation , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Neointima/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Tunica Intima/pathology , Tunica Intima/metabolism , Urotensins/metabolism , Urotensins/genetics , Urotensins/pharmacology , YAP-Signaling Proteins/metabolism
9.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642079

ABSTRACT

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Subject(s)
Hyperplasia , Macrophages , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma , TNF Receptor-Associated Factor 5 , Animals , Macrophages/metabolism , TNF Receptor-Associated Factor 5/genetics , TNF Receptor-Associated Factor 5/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Male , Mice , Humans , Carotid Arteries/pathology , Neointima/pathology , Neointima/metabolism , Interleukin-4/genetics , Cells, Cultured , Tunica Intima/pathology , Lipopolysaccharides/pharmacology
10.
JCI Insight ; 9(9)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592807

ABSTRACT

BACKGROUNDDisease of the aorta varies from atherosclerosis to aneurysms, with complications including rupture, dissection, and poorly characterized limited tears. We studied limited tears without any mural hematoma, termed intimomedial tears, to gain insight into aortic vulnerability to excessive wall stresses. Our premise is that minimal injuries in aortas with sufficient medial resilience to prevent tear progression correspond to initial mechanisms leading to complete structural failure in aortas with significantly compromised medial resilience.METHODSIntimomedial tears were macroscopically identified in 9 of 108 ascending aortas after surgery and analyzed by histology and immunofluorescence confocal microscopy.RESULTSNonhemorrhagic, nonatheromatous tears correlated with advanced aneurysmal disease and most lacked distinctive symptoms or radiological signs. Tears traversed the intima and part of the subjacent media, while the resultant defects were partially or completely filled with neointima characterized by differentiated smooth muscle cells, scattered leukocytes, dense fibrosis, and absent elastic laminae despite tropoelastin synthesis. Healed lesions contained organized fibrin at tear edges without evidence of plasma and erythrocyte extravasation or lipid accumulation.CONCLUSIONThese findings suggest a multiphasic model of aortic wall failure in which primary lesions of intimomedial tears either heal if the media is sufficiently resilient or progress as dissection or rupture by medial delamination and tear completion, respectively. Moreover, mural incorporation of thrombus and cellular responses to injury, two historically important concepts in atheroma pathogenesis, contribute to vessel wall repair with adequate conduit function, but even together are not sufficient to induce atherosclerosis.FUNDINGNIH (R01-HL146723, R01-HL168473) and Yale Department of Surgery.


Subject(s)
Aorta , Atherosclerosis , Fibrosis , Myocytes, Smooth Muscle , Humans , Male , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Atherosclerosis/pathology , Female , Aorta/pathology , Aged , Middle Aged , Neointima/pathology , Tunica Intima/pathology , Tunica Media/pathology , Tunica Media/metabolism
11.
Acta Biomater ; 179: 371-384, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382829

ABSTRACT

Endovascular stenting is a safer alternative to open surgery for use in treating cerebral arterial stenosis and significantly reduces the recurrence of ischemic stroke, but the widely used bare-metal stents (BMSs) often result in in-stent restenosis (ISR). Although evidence suggests that drug-eluting stents are superior to BMSs in the short term, their long-term performances remain unknown. Herein, we propose a potential vascular stent modified by immobilizing clickable chemerin 15 (C15) peptides on the stent surface to suppress coagulation and restenosis. Various characterization techniques and an animal model were used to evaluate the surface properties of the modified stents and their effects on endothelial injury, platelet adhesion, and inflammation. The C15-immobilized stent could prevent restenosis by minimizing endothelial injury, promoting physiological healing, restraining the platelet-leukocyte-related inflammatory response, and inhibiting vascular smooth muscle cell proliferation and migration. Furthermore, in vivo studies demonstrated that the C15-immobilized stent mitigated inflammation, suppressed neointimal hyperplasia, and accelerated endothelial restoration. The use of surface-modified, anti-inflammatory, endothelium-friendly stents may be of benefit to patients with arterial stenosis. STATEMENT OF SIGNIFICANCE: Endovascular stenting is increasingly used for cerebral arterial stenosis treatment, aiming to prevent and treat ischemic stroke. But an important accompanying complication is in-stent restenosis (ISR). Persistent inflammation has been established as a hallmark of ISR and anti-inflammation strategies in stent modification proved effective. Chemerin 15, an inflammatory resolution mediator with 15-aa peptide, was active at picomolar through cell surface receptor, no need to permeate cell membrane and involved in resolution of inflammation by inhibiting inflammatory cells adhesion, modulating macrophage polarization into protective phenotype, and reducing inflammatory factors release. The implications of this study are that C15 immobilized stent favors inflammation resolution and rapid re-endothelialization, and exhibits an inhibitory role of restenosis. As such, it helps the decreased incidence of ISR.


Subject(s)
Chemokines , Hyperplasia , Neointima , Stents , Animals , Chemokines/metabolism , Humans , Neointima/pathology , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Intercellular Signaling Peptides and Proteins/pharmacology , Peptides/pharmacology , Peptides/chemistry , Mice , Cell Proliferation/drug effects , Wound Healing/drug effects , Immobilized Proteins/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects
12.
Eur J Pharmacol ; 968: 176422, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38365108

ABSTRACT

Vascular smooth muscle cells (VSMCs) contribute to neointimal hyperplasia (NIH) after vascular injury, a common feature of vascular remodelling disorders. Suramin is known to exert antitumour effects by inhibiting the proliferation of various tumour cells; however, its effects and mechanism on VSMCs remain unclear. This study investigated the effects of suramin on human aortic smooth muscle cells (HASMCs), rat aortic smooth muscle cells (RASMCs) and NIH to examine its suitability for the prevention of vascular remodelling disorders. In vitro, suramin administration reduced platelet-derived growth factor type BB (PDGF-BB)-stimulated proliferation, migration, and dedifferentiation of VSMCs through a transforming growth factor beta receptor 1 (TGFBR1)/Smad2/3-dependent pathway. Suramin dramatically inhibited NIH ligation in the left common carotid artery (LCCA) vivo. Therefore, our results indicate that suramin protects against the development of pathological vascular remodelling by attenuating VSMCs proliferation, migration, and phenotypic transformation and may be used as a potential medicine for the treatment of NIH.


Subject(s)
Neointima , Suramin , Rats , Humans , Animals , Hyperplasia/pathology , Cell Proliferation , Suramin/pharmacology , Suramin/metabolism , Neointima/pathology , Muscle, Smooth, Vascular , Receptor, Transforming Growth Factor-beta Type I/metabolism , Vascular Remodeling , Becaplermin/pharmacology , Myocytes, Smooth Muscle , Cell Movement , Cells, Cultured
13.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(2): 150-157, 2024 Feb 24.
Article in Chinese | MEDLINE | ID: mdl-38326066

ABSTRACT

Objective: To investigate the characteristics of neointimal hyperplasia (NIH) in patients with in-stent restenosis (ISR) over 5 years post-drug-eluting stent (DES) implantation based on optical coherence tomography (OCT). Methods: In this cross-sectional study, patients with DES-ISR who underwent OCT examination at PLA General Hospital between March 2010 and March 2022 were retrospectively included. All patients were divided into≤5 years DES-ISR group and>5 years DES-ISR group according to the time interval after DES implantation. Quantitative and qualitative analyses were conducted on OCT images to compare the clinical data and lesion characteristics of two patient groups. Furthermore, the independent clinical predictive factors of in-stent neoatherosclerosis (ISNA) were analyzed by multivariable logistic regression. Results: A total of 230 DES-ISR patients with 249 lesions were included, with an age of (63.1±10.4) years and 188 males (81.7%). The median interval after DES implantation was 6 (2, 9) years. There were 117 patients (122 ISR lesions) in the≤5 years DES-ISR group, and 113 patients (127 ISR lesions) in the>5 years DES-ISR group. Compared with≤5 years DES-ISR,>5 years DES-ISR showed more heterogeneous patterns (65.4% (83/127) vs. 48.4% (59/122), P=0.007), diffuse patterns (46.5% (59/127) vs. 31.2% (38/122), P=0.013), macrophage accumulations (44.1% (56/127) vs. 31.2% (38/122), P=0.035) in NIH and higher prevalence of ISNA (83.5% (106/127) vs. 72.1% (88/122), P=0.031). According to multivariable logistic regression, the independent predictive factor for ISNA was female (OR=0.44, 95%CI 0.21-0.90, P=0.026). Female (OR=0.48, 95%CI 0.23-0.99, P=0.046) and low-density lipoprotein cholesterol level (OR=1.62, 95%CI 1.01-2.59, P=0.046) were independent predictive factors, respectively, for lipid ISNA. Calcified ISNA was independently associated with time interval of post-DES implantation (OR=1.18, 95%CI 1.07-1.29, P=0.001). Conclusion: DES-ISR patients with a time interval of>5 years after stent implantation have a higher prevalence of ISNA and more complex lesions. Gender, the level of low-density lipoprotein cholesterol, and the time interval post-DES implantation are independently correlated with ISNA, lipid ISNA, and calcified ISNA.


Subject(s)
Coronary Restenosis , Drug-Eluting Stents , Humans , Male , Female , Middle Aged , Aged , Neointima/pathology , Tomography, Optical Coherence/methods , Retrospective Studies , Cross-Sectional Studies , Coronary Vessels/pathology , Stents , Lipoproteins, LDL , Cholesterol , Lipids , Coronary Angiography
14.
J Vasc Interv Radiol ; 35(4): 611-617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171414

ABSTRACT

PURPOSE: To establish an animal model for in-stent restenosis (ISR) after postthrombotic iliac vein stent placement and characterize histopathological changes in tissue within the stented vein. MATERIALS AND METHODS: Iliac vein thrombosis was induced using balloon occlusion and thrombin injection in 8 male Boer goats. Mechanical thrombectomy and iliac vein stent placement were performed 3 days after thrombosis induction. Restenosis was evaluated by venography and optical coherence tomography (OCT) at 1 and 8 weeks after stent placement, and stent specimens were taken for pathological examination after the animals were euthanized. RESULTS: Thrombosis induction was successful in all 8 goats, with >80% iliac vein occlusion. After thrombus removal, OCT revealed considerable venous intimal thickening and a small number of mural thrombi. Neointimal hyperplasia with thrombus formation was observed in all goats 1 week after stent implantation; the degree of ISR was 15%-33%. At 8 weeks, the degree of ISR was 21%-32% in 3 goats, and stent occlusion was observed in 1 goat. At 1 week, the neointima predominantly consisted of fresh thrombi. At 8 weeks, proliferplastic fibrotic tissue and smooth muscle cells (SMCs) were predominant, and the stent surfaces were endothelialized in 2 of 3 goats and partially endothelialized in 1 goat. CONCLUSIONS: In the goat model, postthrombotic neointimal hyperplasia in the venous stent may result from time-dependent thrombus formation and organization, accompanied by migration and proliferation of SMCs, causing ISR. These results provide a basis to further explore the mechanism of venous ISR and promote the development of venous stents that reduce neointimal hyperplasia.


Subject(s)
Coronary Restenosis , Venous Thrombosis , Animals , Male , Iliac Vein/diagnostic imaging , Iliac Vein/surgery , Iliac Vein/pathology , Coronary Restenosis/pathology , Goats , Hyperplasia/pathology , Stents , Neointima/pathology , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/therapy
15.
Hypertension ; 81(4): 787-800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240164

ABSTRACT

BACKGROUND: High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS: Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS: We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS: This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.


Subject(s)
Carotid Artery Injuries , Hypertension , Vascular System Injuries , Humans , Rats , Animals , Rats, Inbred SHR , Endothelial Cells/metabolism , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery Injuries/therapy , Neointima/pathology , Rats, Inbred WKY , RNA
16.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172726

ABSTRACT

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Subject(s)
Carotid Artery Injuries , Vascular System Injuries , Animals , Rats , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Fibromodulin/metabolism , Hyperplasia/complications , Hyperplasia/metabolism , Hyperplasia/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Rats, Sprague-Dawley , RNA/metabolism , RNA, Transfer/metabolism , Vascular Remodeling , Vascular System Injuries/metabolism
17.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279051

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Subject(s)
Muscle, Smooth, Vascular , Vascular System Injuries , Mice , Animals , Hyperplasia/metabolism , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Cell Proliferation , Serum Response Factor/genetics , Serum Response Factor/metabolism , Constriction, Pathologic/metabolism , Constriction, Pathologic/pathology , Transcription Factors/metabolism , Phenotype , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Cell Movement
18.
Tissue Cell ; 86: 102286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091851

ABSTRACT

Neointimal hyperplasia is reportedly essential for arteriovenous fistulas (AVF) in patients undergoing hemodialysis. Oxidative stress is vital in the progression of uremic venous intimal hyperplasia. Studies have suggested that zinc ions obstruct vascular calcification in patients with chronic kidney disease (CKD). Recent studies have shown that the zinc finger protein, Zic family member 3 (ZIC3), is crucial for the earliest cardiovascular progenitors. ZIC3 mutations are associated with congenital heart disease. However, the mechanism of action of ZIC3 in vascular intimal hyperplasia in CKD remains unelucidated. Venous specimens were collected during primary AVF surgery and traumatic amputation, and serum samples were collected from patients with CKD and healthy controls. Mouse vascular smooth muscle cells (VSMCs) were treated with hydrogen peroxide (H2O2) to clarify the role of ZIC3 in CKD. ZIC3 expression was reduced in the veins of patients with uremia and the serum of those with CKD. Zic3 and Bcl2 levels were significantly decreased in mouse VSMCs treated with H2O2·H2O2 inhibited mouse VSMC activity, upregulated Bax, and cleaved caspase 3 expression. Following Zic3 overexpression, Bcl2 expression level and cell viability were elevated, whereas Bax and cleaved caspase 3 expression levels were downregulated. In contrast, Zic3 knockdown yielded the opposite results. Therefore, ZIC3 could be a new therapeutic target in venous neointimal hyperplasia of CKD.


Subject(s)
Muscle, Smooth, Vascular , Renal Insufficiency, Chronic , Humans , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Hyperplasia , Caspase 3/metabolism , Hydrogen Peroxide/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/drug therapy , Apoptosis/genetics , Neointima/metabolism , Neointima/pathology , Oxidative Stress/genetics , Family , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/metabolism
19.
J Vasc Interv Radiol ; 35(2): 285-292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37871832

ABSTRACT

PURPOSE: To determine whether inhibition of the F11 receptor/JAM-A (F11R) using F11R-specific antagonist peptide 4D results in inhibition of smooth muscle cell (SMC) proliferation and migration in vivo, known as neointimal hyperplasia (NIH), using a mouse focal carotid artery stenosis model (FCASM). MATERIALS AND METHODS: The mouse FCASM was chosen to test the hypothesis because the dominant cell type at the site of stenosis is SMC, similar to that in vascular access stenosis. Fourteen C57BL/6 mice underwent left carotid artery (LCA) partial ligation to induce stenosis, followed by daily injection of peptide 4D in 7 mice and saline in the remaining 7 mice, and these mice were observed for 21 days and then euthanized. Bilateral carotid arteries were excised for histologic analysis of the intima and media areas. RESULTS: The mean intimal area was significantly larger in control mice compared with peptide 4D-treated mice (0.031 mm2 [SD ± 0.024] vs 0.0082 mm2 [SD ± 0.0103]; P = .011). The mean intima-to-intima + media area ratio was significantly larger in control mice compared with peptide 4D-treated mice (0.27 [SD ± 0.13] vs 0.089 [SD ± 0.081]; P = .0079). NIH was not observed in the right carotid arteries in both groups. CONCLUSIONS: Peptide 4D, an F11R antagonist, significantly inhibited NIH in C57BL/6 mice in a FCASM.


Subject(s)
Carotid Stenosis , Junctional Adhesion Molecule A , Animals , Mice , Hyperplasia/metabolism , Hyperplasia/pathology , Junctional Adhesion Molecule A/metabolism , Tunica Intima/pathology , Disease Models, Animal , Constriction, Pathologic/pathology , Mice, Inbred C57BL , Neointima/metabolism , Neointima/pathology , Carotid Arteries , Peptides/pharmacology , Peptides/metabolism
20.
Cell Death Dis ; 14(11): 758, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37989732

ABSTRACT

Autophagy inducers can prevent cardiovascular aging and age-associated diseases including atherosclerosis. Therefore, we hypothesized that autophagy-inducing compounds that act on atherosclerosis-relevant cells might have a protective role in the development of atherosclerosis. Here we identified 3,4-dimethoxychalcone (3,4-DC) as an inducer of autophagy in several cell lines from endothelial, myocardial and myeloid/macrophagic origin, as demonstrated by the aggregation of the autophagosome marker GFP-LC3 in the cytoplasm of cells, as well as the downregulation of its nuclear pool indicative of autophagic flux. In this respect, 3,4-DC showed a broader autophagy-inducing activity than another chalcone (4,4- dimethoxychalcone), spermidine and triethylene tetramine. Thus, we characterized the potential antiatherogenic activity of 3,4-DC in two different mouse models, namely, (i) neointima formation with smooth muscle expansion of vein segments grafted to the carotid artery and (ii) genetically predisposed ApoE-/- mice fed an atherogenic diet. In the vein graft model, local application of 3,4-DC was able to maintain the lumen of vessels and to reduce neointima lesions. In the diet-induced model, intraperitoneal injections of 3,4-DC significantly reduced the number of atherosclerotic lesions in the aorta. In conclusion, 3,4-DC stands out as an autophagy inducer with potent antiatherogenic activity.


Subject(s)
Atherosclerosis , Neointima , Mice , Animals , Neointima/drug therapy , Neointima/pathology , Hyperplasia/pathology , Atherosclerosis/pathology , Aorta/pathology , Disease Models, Animal , Autophagy , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...