Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
PLoS One ; 19(6): e0290858, 2024.
Article in English | MEDLINE | ID: mdl-38833488

ABSTRACT

The tarnished plant bug, (TPB) Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae) is a key pest of cotton in the midsouth region and some areas of the eastern United States. Its control methods have been solely based on chemical insecticides which has contributed to insecticidal resistance and shortened residual periods for control of this insect pest. This study was conducted over a two-year period and examined the efficacy and residual effect of four commercial insecticides including lambda-cyhalothrin (pyrethroid), acephate (organophosphate), imidacloprid (neonicotinoid), and sulfoxaflor (sulfoxamine). The effectiveness and residual effects of these insecticides were determined by application on cotton field plots on four different dates during each season using three different concentrations (high: highest labeled commercial dose (CD), medium: 1/10 of the CD, low: 1/100 of the CD) on field cotton plots. Four groups of cotton leaves were randomly pulled from each treated plot and control 0-, 2-, 4-, 7-, and 9-days post treatment (DPT) and exposed to a lab colony of TPB adults. One extra leaf sample/ plot/ spray /DPT interval (0-2-4-7-9-11) during 2016 was randomly collected from the high concentration plots and sent to Mississippi State Chemical Laboratory for residual analysis. Mortality of TPB adults was greatest for those placed on leaves sprayed with the organophosphate insecticide with mortalities (%) of 81.7±23.4 and 63.3±28.8 (SE) 1-day after exposure (DAE) on leaves 0-DPT with the high concentration for 2016 and 2017, respectively, reaching 94.5±9.5 and 95.4±7.6 6-DAE each year. Mortality to all insecticides continued until 9 and 4-DPT for high and medium concentrations, respectively. However, organophosphate (39.4±28.6) and pyrethroid (24.4±9.9) exhibited higher mortality than sulfoxamine (10.6±6.6) and the neonicotinoid (4.0±1.5) 7-DAE on 9-DPT leaves with the high concentration. Based on our results using the current assay procedure, TPB adults were significantly more susceptible to contact than systemic insecticides and due to its residual effect, organophosphate could kill over 80% of the TPB population 7-DPT.


Subject(s)
Gossypium , Insecticides , Neonicotinoids , Nitriles , Nitro Compounds , Phosphoramides , Pyrethrins , Insecticides/pharmacology , Gossypium/parasitology , Animals , Pyrethrins/pharmacology , Neonicotinoids/pharmacology , Mississippi , Nitriles/pharmacology , Nitro Compounds/pharmacology , Insect Control/methods , Heteroptera/drug effects , Imidazoles/pharmacology , Hemiptera/drug effects , Organothiophosphorus Compounds , Pyridines , Sulfur Compounds
2.
Malar J ; 23(1): 160, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778399

ABSTRACT

BACKGROUND: Anopheles mosquito resistance to insecticide remains a serious threat to malaria vector control affecting several sub-Sahara African countries, including Côte d'Ivoire, where high pyrethroid, carbamate and organophosphate resistance have been reported. Since 2017, new insecticides, namely neonicotinoids (e.g.; clothianidin) and pyrroles (e.g.; chlorfenapyr) have been pre-qualified by the World Health Organization (WHO) for use in public health to manage insecticide resistance for disease vector control. METHODS: Clothianidin and chlorfenapyr were tested against the field-collected Anopheles gambiae populations from Gagnoa, Daloa and Abengourou using the WHO standard insecticide susceptibility biossays. Anopheles gambiae larvae were collected from several larval habitats, pooled and reared to adulthood in each site in July 2020. Non-blood-fed adult female mosquitoes aged 2 to 5 days were exposed to diagnostic concentration deltamethrin, permethrin, alpha-cypermethrin, bendiocarb, and pirimiphos-methyl. Clothianidin 2% treated papers were locally made and tested using WHO tube bioassay while chlorfenapyr (100 µg/bottle) was evaluated using WHO bottle assays. Furthermore, subsamples of exposed mosquitoes were identified to species and genotyped for insecticide resistance markers including the knock-down resistance (kdr) west and east, and acetylcholinesterase (Ace-1) using molecular techniques. RESULTS: High pyrethroid resistance was recorded with diagnostic dose in Abengourou (1.1 to 3.4% mortality), in Daloa (15.5 to 33.8%) and in Gagnoa (10.3 to 41.6%). With bendiocarb, mortality rates ranged from 49.5 to 62.3%. Complete mortality (100% mortality) was recorded with clothianidin in Gagnoa, 94.9% in Daloa and 96.6% in Abengourou, while susceptibility (mortality > 98%) to chlorfenapyr 100 µg/bottle was recorded at all sites and to pirimiphos-methyl in Gagnoa and Abengourou. Kdr-west mutation was present at high frequency (0.58 to 0.73) in the three sites and Kdr-east mutation frequency was recorded at a very low frequency of 0.02 in both Abengourou and Daloa samples and absent in Gagnoa. The Ace-1 mutation was present at frequencies between 0.19 and 0.29 in these areas. Anopheles coluzzii represented 100% of mosquitoes collected in Daloa and Gagnoa, and 72% in Abengourou. CONCLUSIONS: This study showed that clothianidin and chlorfenapyr insecticides induce high mortality in the natural and pyrethroid-resistant An. gambiae populations in Côte d'Ivoire. These results could support a resistance management plan by proposing an insecticide rotation strategy for vector control interventions.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Anopheles/genetics , Insecticides/pharmacology , Insecticide Resistance/genetics , Cote d'Ivoire , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Female , Neonicotinoids/pharmacology , Guanidines/pharmacology , Malaria/prevention & control , Malaria/transmission , Thiazoles/pharmacology , Pyrroles/pharmacology , Mosquito Control , Larva/drug effects
3.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771932

ABSTRACT

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Subject(s)
Aedes , Azo Compounds , Insecticides , Neonicotinoids , Nitro Compounds , Pyrazoles , Animals , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Aedes/drug effects , Larva/drug effects , Larva/growth & development , Insect Proteins/chemistry , Insect Proteins/metabolism , Behavior, Animal/drug effects , Light , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, GABA/metabolism , Receptors, GABA/chemistry
4.
J Agric Food Chem ; 72(19): 10805-10813, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712504

ABSTRACT

Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to ß-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.


Subject(s)
Insect Proteins , Insecticides , Larva , Neonicotinoids , Nitro Compounds , Receptors, Aryl Hydrocarbon , Animals , Insecticides/pharmacology , Larva/metabolism , Larva/genetics , Larva/growth & development , Larva/drug effects , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Diptera/metabolism , Diptera/genetics , Diptera/drug effects , Diptera/growth & development , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Inactivation, Metabolic , Transcription Factors/genetics , Transcription Factors/metabolism
5.
PLoS One ; 19(5): e0303238, 2024.
Article in English | MEDLINE | ID: mdl-38709762

ABSTRACT

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Subject(s)
Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
6.
Arch Insect Biochem Physiol ; 116(1): e22115, 2024 May.
Article in English | MEDLINE | ID: mdl-38770623

ABSTRACT

Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.


Subject(s)
Insecticides , Neonicotinoids , Temperature , Insecticides/pharmacology , Animals , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Insect Control/methods , Weevils/drug effects , Thiazoles/pharmacology
7.
Malar J ; 23(1): 119, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664703

ABSTRACT

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Neonicotinoids , Organothiophosphorus Compounds , Pyrethrins , Thiazoles , Animals , Anopheles/drug effects , Insecticides/pharmacology , Guanidines/pharmacology , Mosquito Vectors/drug effects , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Mosquito Control/methods , Organothiophosphorus Compounds/pharmacology , Malaria/prevention & control , Malaria/transmission , Benin , Nitriles/pharmacology , Humans
8.
Vet Parasitol ; 328: 110178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569277

ABSTRACT

The control of the sheep blowfly relies on the use of insecticides. There have been several reports of in vitro and in vivo resistance to the most widely-used flystrike control chemical, dicyclanil. A recent report also described in vitro resistance to imidacloprid in a strain collected from a single property over three consecutive seasons that also showed resistance to dicyclanil. The present study aimed to use in vitro assays to examine five field-collected blowfly strains to determine if this co-occurrence of resistance to dicyclanil and imidacloprid was present more widely in field strains and to also measure resistance patterns to the other currently-used flystrike control chemicals. Each of the strains showed significant levels of resistance to both dicyclanil and imidacloprid: resistance factors at the IC50 of 9.1-23.8 for dicyclanil, and 8.7-14.1 for imidacloprid. Resistance factors at the IC95 ranged from 16.5 to 53.7, and 14.6-24.3 for dicyclanil and imidacloprid, respectively. Resistance factors were up to 8.5 for cyromazine at the IC95. Resistance to dicyclanil and imidacloprid was suppressed by co-treatment with the cytochrome P450 inhibitor, aminobenzotriazole, implicating this enzyme system in the observed resistances. We discuss the implications of the co-occurrence of resistance to dicyclanil and imidacloprid on insecticide rotation strategies for blowfly control. We also discuss the roles of insecticide resistance, environmental factors (e.g. rainfall), operational factors (e.g. insecticide application technique) and other animal health issues (e.g. scouring / diarrhoea) that together will impact on the likelihood of flystrike occurring at an earlier time point than expected after insecticide application.


Subject(s)
Diptera , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Animals , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Diptera/drug effects , Sheep , Sheep Diseases/parasitology , Juvenile Hormones , Triazines
9.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Article in English | MEDLINE | ID: mdl-38685219

ABSTRACT

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Subject(s)
Cytochrome P-450 Enzyme System , Hemiptera , Insect Proteins , Insecticide Resistance , Insecticides , Ivermectin/analogs & derivatives , Pyrazoles , Pyridazines , ortho-Aminobenzoates , Animals , Hemiptera/drug effects , Hemiptera/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Pyridazines/pharmacology , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Pyrazoles/pharmacology , Phylogeny , Neonicotinoids/pharmacology , Gene Knockdown Techniques , Molecular Docking Simulation , Amino Acid Sequence , Ivermectin/pharmacology , Ivermectin/toxicity
10.
Pestic Biochem Physiol ; 201: 105863, 2024 May.
Article in English | MEDLINE | ID: mdl-38685216

ABSTRACT

The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.


Subject(s)
Glutathione Transferase , Hemiptera , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Hemiptera/drug effects , Hemiptera/genetics , Hemiptera/metabolism , Animals , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Insecticides/pharmacology , Insecticides/metabolism , Insecticide Resistance/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA Interference , Imidazoles/pharmacology , Imidazoles/metabolism
11.
J Agric Food Chem ; 72(13): 6942-6953, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506763

ABSTRACT

Thiamethoxam (THX), when applied to the soil, can be taken up by citrus roots and subsequently transported to the leaves, providing effective protection of plants against the Asian citrus psyllid (Diaphorina citri Kuwayama). In this study, the field experiments showed that the coapplication of THX and nitrogen fertilizer (AN) did not affect THX uptake in six-year-old citrus plants. However, their coapplication promoted THX uptake in three-year-old Potassium trifoliate rootstocks and relieved the inhibition of AN at a higher level on plant growth characteristics, including biomass and growth of root and stem. RNA-seq analysis found that THX induced upregulation of a cationic amino acid transporter (PtCAT7) in citrus leaves. PtCAT7 facilitated THX uptake in the yeast strain to inhibit its growth, and the PtCAT7 protein was localized on the plasma membrane. Our results demonstrate that THX and N fertilizer can be coapplied and PtCAT7 may be involved in THX uptake in citrus.


Subject(s)
Citrus , Hemiptera , Insecticides , Animals , Thiamethoxam , Seedlings , Insecticides/pharmacology , Neonicotinoids/pharmacology , Fertilizers , Amino Acid Transport Systems
12.
Environ Microbiol ; 26(3): e16603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494634

ABSTRACT

Plant-systemic neonicotinoid (NN) insecticides can exert non-target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant-insect interactions, including nectar-inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN-treated canola (Brassica napus) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field-relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.


Subject(s)
Insecticides , Plant Nectar , Animals , Neonicotinoids/pharmacology , Insecticides/pharmacology , Insecta , Yeasts , Plants
13.
J Agric Food Chem ; 72(11): 5671-5681, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442746

ABSTRACT

Neonicotinoids have been widely used to control pests with remarkable effectiveness. Excessive insecticides have led to serious insect resistance. Mutations of the nicotinic acetylcholine receptor (nAChR) are one of the reasons for neonicotinoid resistance conferred in various agricultural pests. Two mutations, V65I and V104I, were found in the nAChR ß1 subunit of two neonicotinoid-resistant aphid populations. However, the specific functions of the two mutations remain unclear. In this study, we cloned and identified four nAChR subunits (α1, α2, α8, and ß1) of thrips and found them to be highly homologous to the nAChR subunits of other insects. Subsequently, we successfully expressed two subtypes nAChR (α1/α2/α8/ß1 and α1/α8/ß1) by coinjecting three cofactors for the first time in thrips, and α1/α8/ß1 showed abundant current rapidly. Acetylcholine, neonicotinoids, and sulfoxaflor exhibited different activation capacities for the two subtypes of nAChRs. Finally, V65I was found to significantly reduce the binding ability of nAChR to neonicotinoids and sulfoxaflor through electrophysiology and computer simulations. V104I caused a decrease in agonist affinity (pEC50) but an increase in the efficacy (Imax) of nAChR against neonicotinoids and reduced the binding ability of nAChR to sulfoxaflor. This study provides theoretical and technical support for studying the molecular mechanisms of neonicotinoid resistance in pests.


Subject(s)
Insecticides , Pyridines , Receptors, Nicotinic , Sulfur Compounds , Animals , Neonicotinoids/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Insecta/metabolism , Insecticides/pharmacology , Insecticides/chemistry , Mutation , Nitro Compounds
14.
Malar J ; 23(1): 65, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431623

ABSTRACT

BACKGROUND: Neonicotinoids are potential alternatives for controlling pyrethroid-resistant mosquitoes, but their efficacy against malaria vector populations of sub-Saharan Africa has yet to be investigated. The aim of the present study was to test the efficacy of four neonicotinoids against adult populations of the sibling species Anopheles gambiae and Anopheles coluzzii sampled along an urban-to-rural gradient. METHODS: The lethal toxicity of three active ingredients for adults of two susceptible Anopheles strains was assessed using concentration-response assays, and their discriminating concentrations were calculated. The discriminating concentrations were then used to test the susceptibility of An. gambiae and An. coluzzii mosquitoes collected from urban, suburban and rural areas of Yaoundé, Cameroon, to acetamiprid, imidacloprid, clothianidin and thiamethoxam. RESULTS: Lethal concentrations of neonicotinoids were relatively high suggesting that this class of insecticides has low toxicity against Anopheles mosquitoes. Reduced susceptibility to the four neonicotinoids tested was detected in An. gambiae populations collected from rural and suburban areas. By contrast, adults of An. coluzzii that occurred in urbanized settings were susceptible to neonicotinoids except acetamiprid for which 80% mortality was obtained within 72 h of insecticide exposure. The cytochrome inhibitor, piperonyl butoxide (PBO), significantly enhanced the activity of clothianidin and acetamiprid against An. gambiae mosquitoes. CONCLUSIONS: These findings corroborate susceptibility profiles observed in larvae and highlight a significant variation in tolerance to neonicotinoids between An. gambiae and An. coluzzii populations from Yaoundé. Further studies are needed to disentangle the role of exposure to agricultural pesticides and of cross-resistance mechanisms in the development of neonicotinoid resistance in some Anopheles species.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Pyrethrins , Thiazoles , Animals , Insecticides/pharmacology , Cameroon , Insecticide Resistance , Mosquito Vectors , Neonicotinoids/pharmacology , Pyrethrins/pharmacology
15.
Parasit Vectors ; 17(1): 98, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429846

ABSTRACT

BACKGROUND: For decades, various agrochemicals have been successfully repurposed for mosquito control. However, preexisting resistance caused in larval and adult populations by unintentional pesticide exposure or other cross-resistance mechanisms poses a challenge to the efficacy of this strategy. A better understanding of larval adaptation to the lethal and sublethal effects of residual pesticides in aquatic habitats would provide vital information for assessing the efficacy of repurposed agrochemicals against mosquitoes. METHODS: We reared field-collected mosquito larvae in water containing a concentration of agrochemical causing 100% mortality in susceptible mosquitoes after 24 h (lethal concentration). Using this experimental setup, we tested the effect of lethal concentrations of a pyrrole (chlorfenapyr, 0.10 mg/l), a pyrethroid (deltamethrin, 1.5 mg/l), and three neonicotinoids including imidacloprid (0.075 mg/l), acetamiprid (0.15 mg/l), and clothianidin (0.035 mg/l) on mortality rates, growth, and survival in third-instar larvae of the two sibling species Anopheles gambiae and Anopheles coluzzii collected from Yaoundé, Cameroon. RESULTS: We found that An. gambiae and An. coluzzii larvae were susceptible to chlorfenapyr and were killed within 24 h by a nominal concentration of 0.10 mg/l. Consistent with strong resistance, deltamethrin induced low mortality in both species. Lethal concentrations of acetamiprid, imidacloprid, and clothianidin strongly inhibited survival, growth, and emergence in An. coluzzii larvae. By contrast, depending on the active ingredient and the population tested, 5-60% of immature stages of An. gambiae were able to grow and emerge in water containing a lethal concentration of neonicotinoids, suggesting cross-resistance to this class of insecticides. CONCLUSIONS: These findings corroborate susceptibility profiles observed in adults and suggest that unintentional pesticide exposure or other cross-resistance processes could contribute to the development of resistance to neonicotinoids in some Anopheles populations.


Subject(s)
Anopheles , Guanidines , Insecticides , Nitriles , Nitro Compounds , Pyrethrins , Thiazoles , Animals , Water , Insecticide Resistance , Mosquito Vectors , Cameroon/epidemiology , Neonicotinoids/pharmacology , Insecticides/pharmacology , Larva
16.
Chem Biodivers ; 21(4): e202400218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38381590

ABSTRACT

Certain 2-amino-6-alkoxy-4-arylpyridine-3,5-dicyanide 1a-e were prepared via a straightforward process using microwave technology rather than conventional methods. This involved reaction of arylidenemalononitrile thru propanedinitrile in the occurrence of sodium alkoxide under MW. While, their positional isomer 4-amino-6-alkoxy-2-arylpyridine-3,5-dicyanide 3a-j have been separated from the reaction of aryl aldehydes with 2-aminoprop-1-ene-1,1,3-tricarbonitrile 2 in the presence of sodium alkoxide using microwave technic. Furthermore, the insecticidal properties of all synthesized compounds were observed with respect to Cotton aphid nymphs and adults. Neonicotinoid pesticides are indicated as the most effective pesticides toward aphids and many other pests. Many insecticides are discovered as novelties. As a result, several pyridine compounds were chemical method synthesized to serve as equivalents of neonicotinoids, a broad class of insecticides. With LC50 value of 0.03 mg/L, components 3g exhibit the highest insecticidal bioactivity. This work discusses how to find new chemicals that could be used as insecticidal agents in the future.


Subject(s)
Alcohols , Aphids , Insecticides , Animals , Insecticides/chemistry , Microwaves , Neonicotinoids/pharmacology , Sodium/pharmacology
17.
Pest Manag Sci ; 80(6): 3000-3009, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38312101

ABSTRACT

BACKGROUND: To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS: The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 µm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 µm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION: Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Neonicotinoids , Solanum tuberosum , Thiamethoxam , Thiazoles , Animals , Aphids/drug effects , Aphids/genetics , Solanum tuberosum/parasitology , Insecticides/pharmacology , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Wasps/drug effects , Wasps/physiology , Oxazines/pharmacology , Nitro Compounds/pharmacology , Nymph/drug effects , Nymph/growth & development , Nymph/parasitology
18.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38327015

ABSTRACT

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , RNA Interference , RNA, Double-Stranded , Aphids/genetics , Animals , RNA, Double-Stranded/genetics , Coleoptera/genetics , Pest Control, Biological/methods , Insect Control/methods , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology
19.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377137

ABSTRACT

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Subject(s)
Hemiptera , Insecticides , Receptors, Nicotinic , Animals , Receptors, Nicotinic/genetics , Insecticides/pharmacology , Hemiptera/genetics , Drosophila melanogaster , Neonicotinoids/pharmacology , Mutation
20.
Pestic Biochem Physiol ; 198: 105743, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225086

ABSTRACT

The alkaloid, nicotine, produced by tobacco and other Solanaceae as an anti-herbivore defence chemical is one of the most toxic natural insecticides in nature. However, some insects, such as the whitefly species, Trialeurodes vaporariorum and Bemisia tabaci show strong tolerance to this allelochemical and can utilise tobacco as a host. Here, we used biological, molecular and functional approaches to investigate the role of cytochrome P450 enzymes in nicotine tolerance in T. vaporariorum and B. tabaci. Insecticide bioassays revealed that feeding on tobacco resulted in strong induced tolerance to nicotine in both species. Transcriptome profiling of both species reared on tobacco and bean hosts revealed profound differences in the transcriptional response these host plants. Interrogation of the expression of P450 genes in the host-adapted lines revealed that P450 genes belonging to the CYP6DP subfamily are strongly upregulated in lines reared on tobacco. Functional characterisation of these P450s revealed that CYP6DP1 and CYP6DP2 of T. vaporariorum and CYP6DP3 of B. tabaci confer resistance to nicotine in vivo. These three genes, in addition to the B. tabaci P450 CYP6DP5, were also found to confer resistance to the neonicotinoid imidacloprid. Our data provide new insight into the molecular basis of nicotine resistance in insects and illustrates how divergence in the evolution of P450 genes in this subfamily in whiteflies may have impacted the extent to which different species can tolerate a potent natural insecticide.


Subject(s)
Hemiptera , Insecticides , Animals , Nicotine/pharmacology , Nicotine/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Insecticide Resistance/genetics , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Nicotiana/genetics , Hemiptera/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...