Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.247
Filter
1.
J Biochem Mol Toxicol ; 38(6): e23733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770938

ABSTRACT

The aim of this investigation was to evaluate the differential expression of the sterol O-acyltransferase 1 (SOAT1) protein in gallbladder cancer tissues and cells, investigate the impact of Avastin on the proliferation, migration, invasion capabilities of gallbladder cancer cells, and its potential to induce cell apoptosis. Immunohistochemical analysis of samples from 145 gallbladder cancer patients was conducted, along with analysis of SOAT1 protein, mRNA expression levels, and cholesterol content in gallbladder cancer cell lines SGC-996, NOZ, and gallbladder cancer (GBC)-SD using Western blot and q-PCR techniques. Furthermore, the effects of Avastin on the proliferation, migration, and invasion capabilities of these gallbladder cancer cell lines were studied, and its ability to induce cell apoptosis was evaluated using flow cytometry, Western blot, and immunohistochemical methods. Additionally, gene expression and pathway analysis were performed, and the synergistic therapeutic effects of Avastin combined with gemcitabine were tested in a gallbladder cancer xenograft model. The study found that SOAT1 expression was significantly upregulated in GBC tissues and positively correlated with lymph node metastasis and TNM staging. In vitro experiments demonstrated that Avastin significantly inhibited the proliferation, migration, and invasion capabilities of SGC-996 and GBC-SD cell lines and induced apoptosis. RNA sequencing analysis revealed multiple differentially expressed genes in cells treated with Avastin, primarily enriched in biological pathways such as signaling transduction, malignant tumors, and the immune system. In vivo, experiments confirmed that Avastin could effectively suppress tumor growth in a gallbladder cancer xenograft model and enhanced the treatment efficacy when used in combination with gemcitabine. Overall, these findings provide new insights and strategies for targeted therapy in gallbladder cancer.


Subject(s)
Gallbladder Neoplasms , Sterol O-Acyltransferase , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/genetics , Humans , Female , Male , Cell Line, Tumor , Animals , Middle Aged , Sterol O-Acyltransferase/metabolism , Sterol O-Acyltransferase/genetics , Mice , Gemcitabine , Cell Proliferation/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Mice, Nude , Apoptosis/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Aged , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics
2.
Front Immunol ; 15: 1341745, 2024.
Article in English | MEDLINE | ID: mdl-38765012

ABSTRACT

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Subject(s)
Integrins , Lymphocyte Activation , Animals , Mice , Integrins/metabolism , Integrins/genetics , Lymphocyte Activation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Knockout , Vestibular Diseases/genetics , Vestibular Diseases/immunology , Vestibular Diseases/metabolism , Face/abnormalities , Humans , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice, Inbred C57BL , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Signal Transduction , Gene Expression Regulation , Abnormalities, Multiple , Hematologic Diseases , Myeloid-Lymphoid Leukemia Protein
3.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38724194

ABSTRACT

NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model for NUT carcinoma that recapitulates the human t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.


Subject(s)
Nuclear Proteins , Oncogene Proteins, Fusion , Transcription Factors , Animals , Mice , Oncogene Proteins, Fusion/genetics , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Disease Models, Animal , Carcinoma/genetics , Carcinoma/metabolism , Translocation, Genetic/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Bromodomain Containing Proteins
4.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753510

ABSTRACT

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Subject(s)
Calcium , Endoplasmic Reticulum , Molecular Dynamics Simulation , Neoplasm Proteins , ORAI1 Protein , Protein Multimerization , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/chemistry , Humans , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/chemistry , Endoplasmic Reticulum/metabolism , Calcium/metabolism , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/chemistry , Protein Domains , HEK293 Cells , Binding Sites , Protein Binding
5.
Genes (Basel) ; 15(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790220

ABSTRACT

This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of gefitinib-associated adverse reactions. We systematically searched PubMed, Virtual Health Library/Bireme, Scopus, Embase, and Web of Science databases for relevant studies published up to February 2024. In total, five studies were included in the review. Additionally, eight genetic variants related to ABCB1 (rs1045642, rs1128503, rs2032582, and rs1025836) and ABCG2 (rs2231142, rs2231137, rs2622604, and 15622C>T) genes were analyzed. Meta-analysis showed a significant association between the ABCB1 gene rs1045642 TT genotype and presence of diarrhea (OR = 5.41, 95% CI: 1.38-21.14, I2 = 0%), the ABCB1 gene rs1128503 TT genotype and CT + TT group and the presence of skin rash (OR = 4.37, 95% CI: 1.51-12.61, I2 = 0% and OR = 6.99, 95%CI: 1.61-30.30, I2= 0%, respectively), and the ABCG2 gene rs2231142 CC genotype and presence of diarrhea (OR = 3.87, 95% CI: 1.53-9.84, I2 = 39%). No ABCB1 or ABCG2 genes were positively associated with the severity of adverse reactions associated with gefitinib. In conclusion, this study showed that ABCB1 and ABCG2 variants are likely to exhibit clinical implications in predicting the presence of adverse reactions to gefitinib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Gefitinib , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Humans , ATP Binding Cassette Transporter, Subfamily B/genetics , Gefitinib/adverse effects , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Antineoplastic Agents/adverse effects , Drug-Related Side Effects and Adverse Reactions/genetics , Genotype
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791198

ABSTRACT

MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , ErbB Receptors , Neoplasm Proteins , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
7.
Biochem Biophys Res Commun ; 717: 150029, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714015

ABSTRACT

The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.


Subject(s)
B-Cell CLL-Lymphoma 10 Protein , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Protein Domains , Protein Multimerization , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/chemistry , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , B-Cell CLL-Lymphoma 10 Protein/metabolism , B-Cell CLL-Lymphoma 10 Protein/chemistry , B-Cell CLL-Lymphoma 10 Protein/genetics , Humans , Crystallography, X-Ray , Models, Molecular , Neoplasm Proteins/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Caspases/metabolism , Caspases/chemistry
8.
Cells ; 13(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786098

ABSTRACT

Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A. We found that PI 3-kinase activation promoted cell-cycle progression, especially when growth signals were limiting, as well as cell migration, both in a collective monolayer and as single cells. Furthermore, we showed that KMT2D inactivation had relatively little influence on these processes, except for single-cell migration, which KMT2D inactivation promoted in synergy with PI 3-kinase activation. The combination of these two genetic alterations induced expression of the ARPC5L gene that encodes a subunit of the Arp2/3 complex. ARPC5L depletion fully abolished the enhanced migration persistence exhibited by double-mutant cells. Our reconstitution approach in MCF10A has thus revealed both the cell function and the single-cell migration, and the underlying Arp2/3-dependent mechanism, which are synergistically regulated when KMT2D inactivation is combined with the activation of the PI 3-kinase.


Subject(s)
Actin-Related Protein 2-3 Complex , Cell Movement , Epithelial Cells , Histone-Lysine N-Methyltransferase , Phosphatidylinositol 3-Kinases , Humans , Cell Movement/genetics , Epithelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Female , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Mutation/genetics , Cell Line
9.
Sci Rep ; 14(1): 11243, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755179

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Subject(s)
Matrix Attachment Region Binding Proteins , MicroRNAs , Purpura, Thrombocytopenic, Idiopathic , Stromal Interaction Molecule 1 , T-Lymphocytes, Regulatory , Th17 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Humans , Animals , Mice , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/metabolism , Female , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Adult , Middle Aged , Gene Expression Regulation , Disease Models, Animal
10.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747288

ABSTRACT

Triple-negative breast cancer (TNBC) presents a formidable challenge in oncology due to its aggressive phenotype and the immunosuppressive nature of its tumor microenvironment (TME). In this issue of the JCI, Zhu, Banerjee, and colleagues investigated the potential of targeting the OTU domain-containing protein 4 (OTUD4)/CD73 axis to mitigate immunosuppression in TNBC. They identified elevated CD73 expression as a hallmark of immunosuppression in TNBC. Notably, the CD73 expression was regulated by OTUD4-mediated posttranslational modifications. Using ST80, a pharmacologic inhibitor of OTUD4, the authors demonstrated the restoration of cytotoxic T cell function and enhanced efficacy of anti-PD-L1 therapy in preclinical models. These findings underscore the therapeutic potential of targeting the OTUD4/CD73 axis in TNBC.


Subject(s)
5'-Nucleotidase , Protein Processing, Post-Translational , Triple Negative Breast Neoplasms , Tumor Microenvironment , Humans , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , 5'-Nucleotidase/immunology , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Tumor Microenvironment/immunology , Female , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Animals
11.
Mol Cancer ; 23(1): 113, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802795

ABSTRACT

BACKGROUND: The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS: Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS: CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION: This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Neoplasm Proteins , RNA, Circular , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Ferroptosis/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , RNA, Circular/genetics , Cell Line, Tumor , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Disease Progression , Male , Cell Movement/genetics , Xenograft Model Antitumor Assays , Female
12.
Med Oncol ; 41(6): 137, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705933

ABSTRACT

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Subject(s)
Epithelial-Mesenchymal Transition , Microtubule-Associated Proteins , Neoplasm Proteins , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Transforming Growth Factor beta , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice, Nude , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Transforming Growth Factor beta/metabolism
13.
Mol Cancer ; 23(1): 94, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720298

ABSTRACT

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Subject(s)
Carrier Proteins , Fatty Acids , Membrane Proteins , Neoplasm Proteins , Ovarian Neoplasms , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Animals , Thyroid Hormones/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Warburg Effect, Oncologic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays , Cell Proliferation , Proteoglycans
14.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 145-149, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814222

ABSTRACT

The purpose of this study was to investigate the expression of CD109 and its clinicopathological significance in oral squamous cell carcinoma. Data from TIMER2.0 and UALCAN were analyzed to assess CD109 mRNA levels in OSCC. The immunohistochemical method was used to investigate the expressions of CD109 in 20 normal oral mucosa and 75 OSCC and analyzed the relationship between the expression of CD109 and the clinical variables. The mRNA levels of CD109 in OSCC tissues were significantly higher than in adjacent normal tissues (p<0.05). Immunohistochemical analysis revealed that CD109 protein expression was increased in OSCC tissues compared to normal tissues, and this difference was statistically significant (P<0.05). The positive rate of CD109 expression was 94% (16/117) in the group with lymph node metastasis, while it was 55% (32/58) in the group without metastasis (P<0.05). Similarly, the positive rate of CD109 expression was 91% (22/23) in the low differentiation group and 59% (26/52) in the high differentiation group (P<0.05). CD109 expression is markedly higher in OSCC, contributes to the pathological grading of OSCC and predicts lymph node metastasis.


Subject(s)
Antigens, CD , Carcinoma, Squamous Cell , GPI-Linked Proteins , Lymphatic Metastasis , Mouth Neoplasms , Neoplasm Proteins , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/biosynthesis , Immunohistochemistry , Gene Expression Regulation, Neoplastic , Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adult , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Clinical Relevance
15.
Cell Rep ; 43(5): 114174, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700982

ABSTRACT

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.


Subject(s)
Breast Neoplasms , Chromatin , Histone-Lysine N-Methyltransferase , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Chromatin/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methylation/drug effects , Cell Line, Tumor , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Receptors, Estrogen/metabolism , Gene Expression Regulation, Neoplastic/drug effects
16.
Sci Rep ; 14(1): 11595, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773164

ABSTRACT

Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.


Subject(s)
Anoctamin-1 , Bone Neoplasms , DNA Methylation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Promoter Regions, Genetic , Prostatic Neoplasms , Male , Anoctamin-1/metabolism , Anoctamin-1/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice , CpG Islands , Decitabine/pharmacology , Cell Movement/genetics , Epigenesis, Genetic , Azacitidine/pharmacology
17.
Int J Biol Macromol ; 269(Pt 1): 131966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697422

ABSTRACT

JAK2/STAT3/MYC axis is dysregulated in nearly 70 % of human cancers, but targeting this pathway therapeutically remains a big challenge in cancer therapy. In this study, genes associated with JAK2, STAT3, and MYC were analyzed, and potential target genes were selected. Leucine-rich PPR motif-containing protein (LRPPRC) whose function and regulation are not fully understood, emerged as one of top 3 genes in terms of RNA epigenetic modification. Here, we demonstrate LRPPRC may be an independent prognostic indicator besides JAK2, STAT3, and MYC. Mechanistically, LRPPRC impairs N6-methyladenosine (m6A) modification of JAK2, STAT3, and MYC to facilitate nuclear mRNA export and expression. Meanwhile, excess LRPPRC act as a scaffold protein binding to JAK2 and STAT3 to enhance stability of JAK2-STAT3 complex, thereby facilitating JAK2/STAT3/MYC axis activation to promote esophageal squamous cell carcinoma (ESCC) progression. Furthermore, 5,7,4'-trimethoxyflavone was verified to bind to LRPPRC, STAT3, and CDK1, dissociating LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 interaction, leading to impaired tumorigenesis in 4-Nitroquinoline N-oxide induced ESCC mouse models and suppressed tumor growth in ESCC patient derived xenograft mouse models. In summary, this study suggests regulation of m6A modification by LRPPRC, and identifies a novel triplex target compound, suggesting that targeting LRPPRC-mediated JAK2/STAT3/MYC axis may overcome JAK2/STAT3/MYC dependent tumor therapeutic dilemma.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Janus Kinase 2 , STAT3 Transcription Factor , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , STAT3 Transcription Factor/metabolism , Animals , Janus Kinase 2/metabolism , Mice , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Disease Progression , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/metabolism , Adenosine/chemistry , Flavones/pharmacology , Flavones/chemistry , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Female , Male , Flavonoids/pharmacology , Flavonoids/chemistry , Xenograft Model Antitumor Assays , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics
18.
J Cell Mol Med ; 28(9): e18320, 2024 May.
Article in English | MEDLINE | ID: mdl-38685684

ABSTRACT

Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.


Subject(s)
Anoctamin-1 , Liver Diseases , Humans , Anoctamin-1/metabolism , Anoctamin-1/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/genetics , Animals , Signal Transduction , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation
19.
Int Immunopharmacol ; 133: 112090, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640718

ABSTRACT

BACKGROUND: Diminished bioavailability of imatinib in leukemic cells contributes to poor clinical response. We examined the impact of genetic polymorphisms of imatinib on the pharmacokinetics and clinical response in 190 patients with chronic myeloid leukaemia (CML). METHODS: Single nucleotide polymorphisms were genotyped using pyrophosphate sequencing. Plasma trough levels of imatinib were measured using liquid chromatography-tandem mass spectrometry. RESULTS: Patients carrying the TT genotype for ABCB1 (rs1045642, rs2032582, and rs1128503), GG genotype for CYP3A5-rs776746 and AA genotype for ABCG2-rs2231142 polymorphisms showed higher concentration of imatinib. Patients with T allele for ABCB1 (rs1045642, rs2032582, and rs1128503), A allele for ABCG2-rs2231142, and G allele for CYP3A5-rs776746 polymorphisms showed better cytogenetic response and molecular response. In multivariate analysis, carriers of the CYP3A5-rs776746 G allele exhibited higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR). Similarly, patients with the T allele of ABCB1-rs1045642 and rs1128503 demonstrated significantly increased CCyR rates. Patients with the A allele of ABCG2-rs2231142 were associated with higher MMR rates. The AA genotype for CYP3A5-rs776746, and the CC genotype for ABCB1-rs104562, and rs1128503 polymorphisms were associated with a higher risk of imatinib failure. Patients with the G allele for CYP3A5-rs776746 exhibited a higher incidence of anemia, and T allele for ABCB1-rs2032582 demonstrated an increased incidence of diarrhea. CONCLUSIONS: Genotyping of ABCB1, ABCG2, and CYP3A5 genes may be considered in the management of patients with CML to tailor therapy and optimize clinical outcomes.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Antineoplastic Agents , Cytochrome P-450 CYP3A , Imatinib Mesylate , Neoplasm Proteins , Polymorphism, Single Nucleotide , Humans , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/pharmacokinetics , Male , Female , Middle Aged , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Adult , ATP Binding Cassette Transporter, Subfamily B/genetics , Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/blood , Cytochrome P-450 CYP3A/genetics , Neoplasm Proteins/genetics , Genotype , Young Adult , Leukemia, Myeloid, Chronic-Phase/drug therapy , Leukemia, Myeloid, Chronic-Phase/genetics , Adolescent , Treatment Outcome , Aged, 80 and over , Protein Kinase Inhibitors/therapeutic use
20.
Genes (Basel) ; 15(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674407

ABSTRACT

Multidrug resistance (MDR) commonly leads to cancer treatment failure because cancer cells often expel chemotherapeutic drugs using ATP-binding cassette (ABC) transporters, which reduce drug levels within the cells. This study investigated the clinical characteristics and single nucleotide variant (SNV) in ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2, and their association with mortality in pediatric patients with central nervous system tumors (CNST). Using TaqMan probes, a real-time polymerase chain reaction genotyped 15 SNPs in 111 samples. Patients were followed up until death or the last follow-up day using the Cox proportional hazards model. An association was found between the rs1045642 (ABCB1) in the recessive model (HR = 2.433, 95% CI 1.098-5.392, p = 0.029), and the ICE scheme in the codominant model (HR = 9.810, 95% CI 2.74-35.06, p ≤ 0.001), dominant model (HR = 6.807, 95% CI 2.87-16.103, p ≤ 0.001), and recessive model (HR = 6.903, 95% CI 2.915-16.544, p = 0.038) significantly increased mortality in this cohort of patients. An association was also observed between the variant rs3114020 (ABCG2) and mortality in the codominant model (HR = 5.35, 95% CI 1.83-15.39, p = 0.002) and the dominant model (HR = 4.421, 95% CI 1.747-11.185, p = 0.002). A significant association between the ICE treatment schedule and increased mortality risk in the codominant model (HR = 6.351, 95% CI 1.831-22.02, p = 0.004, HR = 9.571, 95% CI 2.856-32.07, p ≤ 0.001), dominant model (HR = 6.592, 95% CI 2.669-16.280, p ≤ 0.001), and recessive model (HR = 5.798, 95% CI 2.411-13.940, p ≤ 0.001). The genetic variants rs3114020 in the ABCG2 gene and rs1045642 in the ABCB1 gene and the ICE chemotherapy schedule were associated with an increased mortality risk in this cohort of pediatric patients with CNST.


Subject(s)
Central Nervous System Neoplasms , Multidrug Resistance-Associated Protein 2 , Polymorphism, Single Nucleotide , Humans , Male , Female , Child , Child, Preschool , Infant , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/pathology , Cohort Studies , Adolescent , Multidrug Resistance-Associated Proteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Genetic Markers/genetics , Neoplasm Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...