Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60.858
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1378356, 2024.
Article in English | MEDLINE | ID: mdl-38948528

ABSTRACT

Background: Cellular senescence is a common biological process with a well-established link to cancer. However, the impact of cellular senescence on tumor progression remains unclear. To investigate this relationship, we utilized transcriptomic data from a senescence gene set to explore the connection between senescence and cancer prognosis. Methods: We developed the senescence score by the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. We obtained transcriptomic information of the senescence gene set from The Cancer Genome Atlas (TCGA) program. Additionally, we created a nomogram that integrates these senescence scores with clinical characteristics, providing a more comprehensive tool for prognosis evaluation. Results: We calculated the senescence score based on the expression level of 42 senescence-related genes. We established the nomogram based on the senescence score and clinical characteristics. The senescence score showed a positive correlation with epithelial-to-mesenchymal transition, cell cycle, and glycolysis, and a negative correlation with autophagy. Furthermore, we carried out Gene Ontology (GO) analysis to explore the signaling pathways and biological process in different senescence score groups. Conclusions: The senescence score, a novel tool constructed in this study, shows promise in predicting survival outcomes across various cancer types. These findings not only highlight the complex interplay between senescence and cancer but also indicate that cellular senescence might serve as a biomarker for tumor prognosis.


Subject(s)
Cellular Senescence , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Epithelial-Mesenchymal Transition , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Nomograms , Transcriptome , Female , Male , Gene Expression Regulation, Neoplastic , Gene Expression Profiling
2.
Pharmacogenomics J ; 24(4): 21, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951505

ABSTRACT

There is a known genetic susceptibility to anthracycline-induced cardiac dysfunction in childhood cancer survivors, but this has not been adequately shown in adolescent and young adult (AYA) patients. Our aim was to determine if the previously identified variants associated with cardiac dysfunction in childhood cancer patients affect AYA cancer patients similarly. Forty-five variants were selected for analysis in 253 AYAs previously treated with anthracyclines. We identified four variants that were associated with cardiac dysfunction: SLC10A2:rs7319981 (p = 0.017), SLC22A17:rs4982753 (p = 0.019), HAS3:rs2232228 (p = 0.023), and RARG:rs2229774 (p = 0.050). HAS3:rs2232228 and SLC10A2:rs7319981 displayed significant effects in our AYA cancer survivor population that were in the opposite direction than that reported in childhood cancer survivors. Genetic variants in the host genes were further analyzed for additional associations with cardiotoxicity in AYA cancer survivors. The host genes were then evaluated in a panel of induced pluripotent stem cell-derived cardiomyocytes to assess changes in levels of expression when treated with doxorubicin. Significant upregulation of HAS3 and SLC22A17 expression was observed (p < 0.05), with non-significant anthracycline-responsivity observed for RARG. Our study demonstrates that there is a genetic influence on cardiac dysfunction in AYA cancer patients, but there may be a difference in the role of genetics between childhood and AYA cancer survivors.


Subject(s)
Anthracyclines , Cancer Survivors , Cardiotoxicity , Genetic Predisposition to Disease , Humans , Adolescent , Anthracyclines/adverse effects , Young Adult , Male , Female , Cardiotoxicity/genetics , Adult , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Heart Diseases/chemically induced , Heart Diseases/genetics , Antibiotics, Antineoplastic/adverse effects , Risk Factors
3.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949020

ABSTRACT

Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.


Subject(s)
Epigenesis, Genetic , Neoplasms , Sex Characteristics , Humans , Female , Neoplasms/genetics , Male , Animals , X Chromosome Inactivation , Gonadal Steroid Hormones/metabolism , Genomic Imprinting
5.
Yale J Biol Med ; 97(2): 179-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947111

ABSTRACT

Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.


Subject(s)
Aldo-Keto Reductases , Cataract , Neoplasms , Humans , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/genetics , Cataract/enzymology , Cataract/genetics , Cataract/metabolism , Chronic Disease , Neoplasms/enzymology , Neoplasms/genetics
6.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951519

ABSTRACT

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Subject(s)
Antineoplastic Agents , CRISPR-Cas Systems , Drug Resistance, Neoplasm , Irinotecan , Oxaliplatin , Protein Serine-Threonine Kinases , Drug Resistance, Neoplasm/genetics , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxaliplatin/pharmacology , Irinotecan/pharmacology , CRISPR-Cas Systems/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects
7.
Adv Protein Chem Struct Biol ; 141: 223-253, 2024.
Article in English | MEDLINE | ID: mdl-38960475

ABSTRACT

Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.


Subject(s)
Epigenesis, Genetic , Isocitrate Dehydrogenase , Neoplasms , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , DNA Methylation
8.
Sci Adv ; 10(27): eadh9613, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959318

ABSTRACT

Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms , Transcriptome , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Gene Expression Profiling , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics
9.
Front Immunol ; 15: 1411393, 2024.
Article in English | MEDLINE | ID: mdl-38962002

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.


Subject(s)
Gene Editing , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Gene Editing/methods , T-Lymphocytes/immunology , Animals , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Engineering , CRISPR-Cas Systems , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Microenvironment/immunology
10.
J Transl Med ; 22(1): 618, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961476

ABSTRACT

BACKGROUND: Cell free DNA (cfDNA)-based assays hold great potential in detecting early cancer signals yet determining the tissue-of-origin (TOO) for cancer signals remains a challenging task. Here, we investigated the contribution of a methylation atlas to TOO detection in low depth cfDNA samples. METHODS: We constructed a tumor-specific methylation atlas (TSMA) using whole-genome bisulfite sequencing (WGBS) data from five types of tumor tissues (breast, colorectal, gastric, liver and lung cancer) and paired white blood cells (WBC). TSMA was used with a non-negative least square matrix factorization (NNLS) deconvolution algorithm to identify the abundance of tumor tissue types in a WGBS sample. We showed that TSMA worked well with tumor tissue but struggled with cfDNA samples due to the overwhelming amount of WBC-derived DNA. To construct a model for TOO, we adopted the multi-modal strategy and used as inputs the combination of deconvolution scores from TSMA with other features of cfDNA. RESULTS: Our final model comprised of a graph convolutional neural network using deconvolution scores and genome-wide methylation density features, which achieved an accuracy of 69% in a held-out validation dataset of 239 low-depth cfDNA samples. CONCLUSIONS: In conclusion, we have demonstrated that our TSMA in combination with other cfDNA features can improve TOO detection in low-depth cfDNA samples.


Subject(s)
DNA Methylation , Genome, Human , Neoplasms , Neural Networks, Computer , Humans , DNA Methylation/genetics , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Organ Specificity/genetics , Algorithms
11.
Cancer Med ; 13(13): e7470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963018

ABSTRACT

INTRODUCTION: Identifying reliable biomarkers that reflect cancer survivorship symptoms remains a challenge for researchers. DNA methylation (DNAm) measurements reflecting epigenetic changes caused by anti-cancer therapy may provide needed insights. Given lack of consensus describing utilization of DNAm data to predict survivorship issues, a review evaluating the current landscape is warranted. OBJECTIVE: Provide an overview of current studies examining associations of DNAm with survivorship burdens in cancer survivors. METHODS: A literature review was conducted including studies if they focused on cohorts of cancer survivors, utilized peripheral blood cell DNAm data, and evaluated the associations of DNAm and survivorship issues. RESULTS: A total of 22 studies were identified, with majority focused on breast (n = 7) or childhood cancer (n = 9) survivors, and half studies included less than 100 patients (n = 11). Survivorship issues evaluated included those related to neurocognition (n = 5), psychiatric health (n = 3), general wellness (n = 9), chronic conditions (n = 5), and treatment specific toxicities (n = 4). Studies evaluated epigenetic age metrics (n = 10) and DNAm levels at individual CpG sites or regions (n = 12) for their associations with survivorship issues in cancer survivors along with relevant confounding factors. Significant associations of measured DNAm in the peripheral blood samples of cancer survivors and survivorship issues were identified. DISCUSSION/CONCLUSION: Studies utilizing epigenetic age metrics and differential methylation analysis demonstrated significant associations of DNAm measurements with survivorship burdens. Associations were observed encompassing diverse survivorship outcomes and timeframes relative to anti-cancer therapy initiation. These findings underscore the potential of these measurements as useful biomarkers in survivorship care and research.


Subject(s)
Cancer Survivors , DNA Methylation , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/mortality , Neoplasms/blood , Epigenesis, Genetic , Survivorship , Biomarkers, Tumor/genetics , Female
12.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965548

ABSTRACT

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/genetics , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Molecular Targeted Therapy
13.
Database (Oxford) ; 20242024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965703

ABSTRACT

Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic laboratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC, a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC population frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from 4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clinically relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members can benefit from more accurate clinical management. Database URL: https://spadahc.ciberisciii.es/.


Subject(s)
Databases, Genetic , Humans , Spain , Genetic Variation , Neoplasms/genetics , Genes, Neoplasm , Genetic Predisposition to Disease
14.
Mol Biol Rep ; 51(1): 788, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970704

ABSTRACT

Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/ß-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/ß-catenin signaling.


Subject(s)
Glycolysis , Neoplasms , Wnt Signaling Pathway , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , beta Catenin/metabolism , Warburg Effect, Oncologic , Animals , Glucose/metabolism
15.
Adv Exp Med Biol ; 1445: 73-88, 2024.
Article in English | MEDLINE | ID: mdl-38967751

ABSTRACT

Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.


Subject(s)
Immunoglobulins , Humans , Animals , Immunoglobulins/genetics , Immunoglobulins/metabolism , Immunoglobulins/immunology , Glycosylation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
16.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972873

ABSTRACT

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Subject(s)
Membrane Glycoproteins , Myeloid Cells , Neoplasms , Receptors, Immunologic , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Prognosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Female , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics
17.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38975894

ABSTRACT

Chimeric antigen receptor (CAR) therapy has emerged as a ground-breaking advancement in cancer treatment, harnessing the power of engineered human immune cells to target and eliminate cancer cells. The escalating interest and investment in CAR therapy in recent years emphasize its profound significance in clinical research, positioning it as a rapidly expanding frontier in the field of personalized cancer therapies. A crucial step in CAR therapy design is choosing the right target as it determines the therapy's effectiveness, safety and specificity against cancer cells, while sparing healthy tissues. Herein, we propose a suite of tools for the identification and analysis of potential CAR targets leveraging expression data from The Cancer Genome Atlas and Genotype-Tissue Expression Project, which are implemented in CARTAR website. These tools focus on pinpointing tumor-associated antigens, ensuring target selectivity and assessing specificity to avoid off-tumor toxicities and can be used to rationally designing dual CARs. In addition, candidate target expression can be explored in cancer cell lines using the expression data for the Cancer Cell Line Encyclopedia. To our best knowledge, CARTAR is the first website dedicated to the systematic search of suitable candidate targets for CAR therapy. CARTAR is publicly accessible at https://gmxenomica.github.io/CARTAR/.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy, Adoptive/methods , Software , Internet , Computational Biology/methods , Databases, Genetic
18.
Cancer Cell ; 42(7): 1157-1159, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981436

ABSTRACT

KRASG12D is the most frequent KRAS mutation in human cancer. In this issue, Zhou et al. describe a novel KRASG12D inhibitor, HRS-4642, that shows potent and selective anti-tumor activity across various models and synergizes with proteasome inhibitors. Responses have also been observed in patients during an ongoing phase 1 trial.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/genetics , Mutation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use
19.
Sci Adv ; 10(28): eadl5606, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985880

ABSTRACT

Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasms , Transcription Initiation Site , Transcriptome , Humans , Gene Expression Profiling/methods , Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics
20.
JCO Precis Oncol ; 8: e2300715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38991178

ABSTRACT

PURPOSE: African American/Black (AA/B) individuals are under-represented in genomic databases and thus less likely to receive definitive information from germline genetic testing (GGT) than non-Hispanic White (NHW) individuals. With nearly 500,000 AA/B and NHW individuals having undergone multigene panel testing (MGPT) for hereditary cancer risk at a single commercial laboratory, to our knowledge, we present the largest study to date investigating cancer GGT results in AA/B and NHW individuals. METHODS: MGPT results from a retrospective cohort of AA/B (n = 48,684) and NHW (n = 444,831) patients were evaluated. Frequencies of pathogenic germline variants (PGVs) and variants of uncertain significance (VUS) were compared between AA/B and NHW individuals. Changes in frequency of VUS over time were determined. Pearson's chi-squared test was used to compare categorical variables among groups. All significance tests were two-tailed, and P < .05 was considered statistically significant. RESULTS: Between 2015 and 2022, rates of VUS decreased 2.3-fold in AA/B and 1.8-fold in NHW individuals; however, frequencies of VUS and PGV remained significantly higher (46% v 32%; P < .0001) and lower (9% v 13%; P < .0001) in AA/B compared with NHW individuals. Rates of VUS in ATM, BRCA1, BRCA2, PALB2, and PMS2 were significantly higher in AA/B compared with NHW individuals, whereas rates of PGV in BRCA1, BRCA2, and PALB2 were higher in AA/B compared with NHW individuals (P < .001). CONCLUSION: Despite reductions in VUS frequencies over time, disparities in definitive GGT results persist. Increasing inclusion of AA/B populations in both testing and research will further increase knowledge of genetic variants across these racial groups.


Subject(s)
Black or African American , Genetic Predisposition to Disease , Germ-Line Mutation , White People , Humans , White People/genetics , Retrospective Studies , Black or African American/genetics , Male , Female , Neoplasms/genetics , Neoplasms/ethnology , Genetic Testing/methods , Middle Aged , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...