Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60.326
Filter
1.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822973

ABSTRACT

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Disease Progression , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Apoptosis/genetics
2.
Clin Lab Med ; 44(2): 123-135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821636

ABSTRACT

Pre-analytical factors in molecular oncology diagnostics are reviewed. Issues around sample collection, storage, and transport that might affect the stability of nucleic acids and the ability to perform molecular testing are addressed. In addition, molecular methods used commonly in clinical diagnostic laboratories, including newer technologies such as next-generation sequencing and digital droplet polymerase chain reaction, as well as their applications, are reviewed. Finally, we discuss considerations in designing a molecular test menu to deliver accurate and timely results in an efficient and cost-effective manner.


Subject(s)
Molecular Diagnostic Techniques , Humans , Neoplasms/diagnosis , Neoplasms/genetics , High-Throughput Nucleotide Sequencing
3.
Clin Lab Med ; 44(2): 277-304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821645

ABSTRACT

Pediatric tumors can be divided into hematologic malignancies, central nervous system tumors, and extracranial solid tumors of bone, soft tissue, or other organ systems. Molecular alterations that impact diagnosis, prognosis, treatment, and familial cancer risk have been described in many pediatric solid tumors. In addition to providing a concise summary of clinically relevant molecular alterations in extracranial pediatric solid tumors, this review discusses conventional and next-generation sequencing-based molecular techniques, relevant tumor predisposition syndromes, and the increasing integration of molecular data into the practice of diagnostic pathology for children with solid tumors.


Subject(s)
Neoplasms , Humans , Child , Neoplasms/genetics , Neoplasms/diagnosis , High-Throughput Nucleotide Sequencing , Genetic Predisposition to Disease
4.
Clin Lab Med ; 44(2): 325-337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821647

ABSTRACT

The rapid adoption of next-generation sequencing in clinical oncology has enabled the detection of molecular biomarkers shared between multiple tumor types. These pan-cancer biomarkers include sequence-altering mutations, copy number changes, gene rearrangements, and mutational signatures and have been demonstrated to predict response to targeted therapy. This article reviews issues surrounding current and emerging pan-cancer molecular biomarkers in clinical oncology: technological advances that enable the broad detection of cancer mutations across hundreds of genes, the spectrum of driver and passenger mutations derived from human cancer genomes, and implications for patient care now and in the near future.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Biomarkers, Tumor/genetics , Neoplasms/diagnosis , Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Mutation
5.
Article in English | MEDLINE | ID: mdl-38821671

ABSTRACT

Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, may be a natural physiological condition or pathophysiological such as in cancer cells or stress induced tetraploidisation. Its contribution to cancer development is well known. However, among the many models proposed to explain the causes, mechanisms and steps of malignant cell transformation, only few integrate tetraploidization into a systemic multistep approach of carcinogenesis. Therefore, we will i) describe the molecular and cellular characteristics of tetraploidy; ii) assess the contribution of stress-induced tetraploidy in cancer development; iii) situate tetraploidy as a metastable state leading to cancer development in a systemic cell-centered approach; iiii) consider knowledge gaps and future perspectives. The available data shows that stress-induced tetraploidisation/polyploidisation leads to p53 stabilisation, cell cycle arrest, followed by cellular senescence or apoptosis, suppressing the proliferation of tetraploid cells. However, if tetraploid cells escape the G1-tetraploidy checkpoint, it may lead to uncontrolled proliferation of tetraploid cells, micronuclei induction, aneuploidy and deploidisation. In addition, tetraploidization favors 3D-chromatin changes and epigenetic effects. The combined effects of genetic and epigenetic changes allow the expression of oncogenic gene expression and cancer progression. Moreover, since micronuclei are inducing inflammation, which in turn may induce additional tetraploidization, tetraploidy-derived genetic instability leads to a carcinogenic vicious cycle. The concept that polyploid cells are metastable intermediates between diploidy and aneuploidy is not new. Metastability denotes an intermediate energetic state within a dynamic system other than the system's state at least energy. Considering in parallel the genetic/epigenetic changes and the probable entropy levels induced by stress-induced tetraploidisation provides a new systemic approach to describe cancer development.


Subject(s)
Cell Transformation, Neoplastic , Neoplasms , Tetraploidy , Humans , Cell Transformation, Neoplastic/genetics , Neoplasms/genetics , Neoplasms/pathology , Animals , Epigenesis, Genetic , Aneuploidy , Cellular Senescence/genetics
6.
Pathol Res Pract ; 258: 155344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744001

ABSTRACT

Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.


Subject(s)
Biomarkers, Tumor , Disease Progression , MicroRNAs , Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis
7.
Pharmacol Res ; 204: 107212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749377

ABSTRACT

Triggering receptor expressed on myeloid cells 1 (TREM1) is a cell surface receptor expressed on neutrophils, monocytes and some tissue macrophages, where it functions as an immunoregulator that controls myeloid cell responses. The activation of TREM1 is suggested to be an upregulation-based, ligands-induced and structural multimerization-mediated process, in which damage- and pathogen-associated molecular patterns play important roles. Activated TREM1 initiates an array of downstream signaling pathways that ultimately result in the production of pro-inflammatory cytokines and chemokines, whereby it functions as an amplifier of inflammation and is implicated in the pathogenesis of many inflammation-associated diseases. Over the past decade, there has been growing evidence for the involvement of TREM1 overactivation in tumor stroma inflammation and cancer progression. Indeed, it was shown that TREM1 promotes tumor progression, immunosuppression, and resistance to therapy by activating tumor-infiltrating myeloid cells. TREM1-deficiency or blockade provide protection against tumors and reverse the resistance to anti-PD-1/PD-L1 therapy and arginine-deprivation therapy in preclinical models. Here, we first review the structure, activation modes and signaling pathways of TREM1 and emphasize the role of soluble TREM1 as a biomarker of infection and cancer. We then focus on the role of TREM1 in cancer and systematically summarize its expression patterns, upregulation mechanisms and functions in tumor development and progression. Lastly, we discuss the therapeutic prospects of TREM1 inhibition, via effective pharmacological inhibitors, in treating cancer and other diseases.


Subject(s)
Neoplasms , Signal Transduction , Triggering Receptor Expressed on Myeloid Cells-1 , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
8.
Int J Med Sci ; 21(7): 1307-1320, 2024.
Article in English | MEDLINE | ID: mdl-38818471

ABSTRACT

Transforming growth factor-ß (TGF-ß) is strongly associated with the cell adhesion signaling pathway in cell differentiation, migration, etc. Mechanistically, TGF-ß is secreted in an inactive form and localizes to the extracellular matrix (ECM) via the latent TGF-ß binding protein (LTBP). However, it is the release of mature TGF-ß that is essential for the activation of the TGF-ß signaling pathway. This progress requires specific integrins (one of the main groups of cell adhesion molecules (CAMs)) to recognize and activate the dormant TGF-ß. In addition, TGF-ß regulates cell adhesion ability through modulating CAMs expression. The aberrant activation of the TGF-ß signaling pathway, caused by abnormal expression of key regulatory molecules (such as Smad proteins, certain transcription factors, and non-coding RNAs), promotes tumor invasive and metastasis ability via epithelial-mesenchymal transition (EMT) during the late stages of tumorigenesis. In this paper, we summarize the crosstalk between TGF-ß and cell adhesion signaling pathway in cancer and its underlying molecular mechanisms.


Subject(s)
Cell Adhesion , Epithelial-Mesenchymal Transition , Neoplasms , Signal Transduction , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Integrins/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic
9.
Sci Immunol ; 9(95): eadl2171, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820140

ABSTRACT

Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.


Subject(s)
Mice, Inbred C57BL , RNA-Binding Proteins , Animals , RNA-Binding Proteins/immunology , RNA-Binding Proteins/genetics , Mice , Humans , Immune Evasion , Tumor Escape/immunology , Mice, Knockout , Neoplasms/immunology , Neoplasms/genetics , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , Female
10.
Acta Oncol ; 63: 368-372, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779868

ABSTRACT

BACKGROUND AND PURPOSE: The Drug Rediscovery Protocol (DRUP) is a Dutch, pan-cancer, nonrandomized clinical trial that aims to investigate the efficacy and safety of targeted and immunotherapies outside their registered indication in patients with advanced or metastatic cancer. PATIENTS: Patients with advanced or metastatic cancer are eligible when there are no standard of care treatment options left and the tumor possesses a molecular genomic variant for which commercially available anticancer treatment is accessible off-label in DRUP. Clinical benefit is the study's primary endpoint, characterized by a confirmed objective response or stable disease after at least 16 weeks of treatment. RESULTS: More than 2,500 patients have undergone evaluation, of which over 1,500 have started treatment in DRUP. The overall clinical benefit rate (CBR) remains 33%. The nivolumab cohort for patients with microsatellite instable metastatic tumors proved highly successful with a CBR of 63%, while palbociclib or ribociclib in patients with tumors harboring CDK4/6 pathway alterations showed limited efficacy, with a CBR of 15%. The formation of two European initiatives (PCM4EU and PRIME-ROSE) strives to accelerate implementation and enhance data collection to broaden equitable access to anticancer treatments and gather more evidence. CONCLUSION: DRUP persists in improving patients access to off-label targeted or immunotherapy in the Netherlands and beyond. The expansion of DRUP-like clinical trials across Europe provides countless opportunities for broadening the horizon of precision oncology.


Subject(s)
Neoplasms , Precision Medicine , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine/methods , Netherlands , Immunotherapy/methods , Medical Oncology/methods , Medical Oncology/trends , Piperazines/therapeutic use , Pyridines/therapeutic use , Nivolumab/therapeutic use , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods
11.
Genesis ; 62(3): e23598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727638

ABSTRACT

Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Neoplasms/genetics , Neoplasms/therapy , Animals , Genetic Therapy/methods , Gene Transfer Techniques
12.
PLoS One ; 19(5): e0303171, 2024.
Article in English | MEDLINE | ID: mdl-38768113

ABSTRACT

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


Subject(s)
High-Throughput Nucleotide Sequencing , Tumor Microenvironment , Animals , Mice , Tumor Microenvironment/immunology , High-Throughput Nucleotide Sequencing/methods , Interferon-gamma/genetics , Interferon-gamma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Mice, Inbred C57BL , RNA, Messenger/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/genetics , Neoplasms/immunology , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Expression Profiling/methods
13.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731883

ABSTRACT

The serine-threonine kinase protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent intracellular protein with multiple roles in cellular biology including metabolic and transcription regulation functions. The cAMP-dependent protein kinase inhibitor ß (PKIB) is one of three known endogenous protein kinase inhibitors of PKA. The role of PKIB is not yet fully understood. Hormonal signaling is correlated with increased PKIB expression through genetic regulation, and increasing PKIB expression is associated with decreased cancer patient prognosis. Additionally, PKIB impacts cancer cell behavior through two mechanisms; the first is the nuclear modulation of transcriptional activation and the second is the regulation of oncogenic AKT signaling. The limited research into PKIB indicates the oncogenic potential of PKIB in various cancers. However, some studies suggest a role of PKIB in non-cancerous disease states. This review aims to summarize the current literature and background of PKIB regarding cancer and related issues. In particular, we will focus on cancer development and therapeutic possibilities, which are of paramount interest in PKIB oncology research.


Subject(s)
Neoplasms , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Protein Kinase Inhibitors/metabolism , Signal Transduction/drug effects , Intracellular Signaling Peptides and Proteins/metabolism
14.
Cell Mol Life Sci ; 81(1): 214, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733529

ABSTRACT

The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.


Subject(s)
Carcinogenesis , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Neoplasm Metastasis , Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Drug Resistance, Neoplasm/genetics , Cell Plasticity/genetics , Animals , Gene Expression Regulation, Neoplastic
15.
J Transl Med ; 22(1): 444, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734658

ABSTRACT

BACKGROUND: Characterization of shared cancer mechanisms have been proposed to improve therapy strategies and prognosis. Here, we aimed to identify shared cell-cell interactions (CCIs) within the tumor microenvironment across multiple solid cancers and assess their association with cancer mortality. METHODS: CCIs of each cancer were identified by NicheNet analysis of single-cell RNA sequencing data from breast, colon, liver, lung, and ovarian cancers. These CCIs were used to construct a shared multi-cellular tumor model (shared-MCTM) representing common CCIs across cancers. A gene signature was identified from the shared-MCTM and tested on the mRNA and protein level in two large independent cohorts: The Cancer Genome Atlas (TCGA, 9185 tumor samples and 727 controls across 22 cancers) and UK biobank (UKBB, 10,384 cancer patients and 5063 controls with proteomics data across 17 cancers). Cox proportional hazards models were used to evaluate the association of the signature with 10-year all-cause mortality, including sex-specific analysis. RESULTS: A shared-MCTM was derived from five individual cancers. A shared gene signature was extracted from this shared-MCTM and the most prominent regulatory cell type, matrix cancer-associated fibroblast (mCAF). The signature exhibited significant expression changes in multiple cancers compared to controls at both mRNA and protein levels in two independent cohorts. Importantly, it was significantly associated with mortality in cancer patients in both cohorts. The highest hazard ratios were observed for brain cancer in TCGA (HR [95%CI] = 6.90[4.64-10.25]) and ovarian cancer in UKBB (5.53[2.08-8.80]). Sex-specific analysis revealed distinct risks, with a higher mortality risk associated with the protein signature score in males (2.41[1.97-2.96]) compared to females (1.84[1.44-2.37]). CONCLUSION: We identified a gene signature from a comprehensive shared-MCTM representing common CCIs across different cancers and revealed the regulatory role of mCAF in the tumor microenvironment. The pathogenic relevance of the gene signature was supported by differential expression and association with mortality on both mRNA and protein levels in two independent cohorts.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/mortality , Female , Male , Gene Expression Regulation, Neoplastic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Microenvironment/genetics , Cohort Studies , Transcriptome/genetics , Middle Aged , Cell Communication
17.
Neoplasma ; 71(2): 117-122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766855

ABSTRACT

The incidence of distant metastases is associated with most cancer-related mortalities. Extracellular vesicles (EVs), secreted from tumors and cancer-associated fibroblasts, are involved in the metastatic process mediating their organotropism through their involvement in the pre-metastatic niche formation. We have been developing suicide gene therapy mediated by EVs secreted from mesenchymal stem/ stromal cells, tumor cells, and cancer-associated fibroblasts. Suicide gene EVs conjugated with prodrug are tumor tropic, penetrate tumor cells, and kill them by intracellular conversion of nontoxic prodrug to an efficient anti-cancer drug. Here, we discuss findings regarding the possibility of using suicide gene EVs as a novel therapeutic approach for metastases, via pre-metastatic niche modification. The suicide gene EVs provide a future perspective for metastasis prevention.


Subject(s)
Extracellular Vesicles , Genes, Transgenic, Suicide , Neoplasm Metastasis , Humans , Genetic Therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/prevention & control , Prodrugs/therapeutic use , Animals , Mesenchymal Stem Cells
18.
Nat Genet ; 56(5): 889-899, 2024 May.
Article in English | MEDLINE | ID: mdl-38741018

ABSTRACT

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.


Subject(s)
Cell Nucleus , DNA Copy Number Variations , DNA, Mitochondrial , Genome, Mitochondrial , Neoplasms , Single-Cell Analysis , Humans , DNA, Mitochondrial/genetics , Single-Cell Analysis/methods , DNA Copy Number Variations/genetics , Cell Nucleus/genetics , Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Animals , Mitochondria/genetics , Whole Genome Sequencing/methods , Mice , Heteroplasmy/genetics
19.
Technol Cancer Res Treat ; 23: 15330338241245939, 2024.
Article in English | MEDLINE | ID: mdl-38752263

ABSTRACT

OBJECTIVES: Small nucleolar RNAs (snoRNAs) form clusters within the genome, representing a mysterious category of small non-coding RNAs. Research has demonstrated that aberrant snoRNAs can contribute to the development of various types of cancers. Recent studies have identified snoRNAs as potentially valuable biomarkers for the diagnosis or/and prognosis of cancers. However, there has been a lack of comprehensive reviews on prognostic and diagnostic snoRNAs across different types of cancers. METHODS: We conducted a systematic search of various databases including Google Scholar, Medline, Cochrane, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang, and SinoMed with a time frame reception to December 30, 2022. A total of 49 relevant articles were included in our analysis, consisting of 21 articles focusing on diagnostic aspects and 41 articles focusing on prognostic aspects. Pooled odds ratio, 95% confidence intervals (CIs), and hazard ratio (HR) were utilized to evaluate clinical parameters and overall survival (OS), respectively. RESULT: The findings indicated that area under the curve, sensitivity, and specificity were 0.85, 75%, and 80% in cancer, respectively. There was a possibility that snoRNAs had a positive impact on the diagnosis (risk ratio, RR = 2.95, 95% CI: 2.75-3.16, P = 0.000) and OS (HR = 1) in cancer. Additionally, abnormally expressed snoRNAs were associated with a positive impact on OS time for chronic lymphocytic leukemia (HR: 0.88, 95%Cl: 0.69-1.11, P < 0.00001), colon adenocarcinoma (HR: 0.97, 95%Cl: 0.91-1.03, P < 0.0001), and ovarian cancer (HR: 0.98, 95%Cl: 0.98-0.99, P < 0.00001). However, dysregulated snoRNAs of colon cancer and colorectal cancer had a negative impact on OS time (HR = 3.01 and 1.01 respectively, P < 0.0001). CONCLUSION: The results strongly suggested that snoRNAs could serve as potential novel indicators for prognosis and diagnosis in cancers. This systematic review followed the guidelines of the Transparent Reporting of Systematic Review and Meta-Analyses (PROSPERO register: CRD42020209096).


Subject(s)
Biomarkers, Tumor , Neoplasms , RNA, Small Nucleolar , Humans , RNA, Small Nucleolar/genetics , Biomarkers, Tumor/genetics , Prognosis , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/mortality , ROC Curve
20.
Int J Oncol ; 65(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38757364

ABSTRACT

MicroRNAs (miRNAs) are a group of non­coding RNAs that exert master regulatory functions in post­-transcriptional gene expression. Accumulating evidence shows that miRNAs can either promote or suppress tumorigenesis by regulating different target genes or pathways and may be involved in the occurrence of carcinoma. miR­409­3p is dysregulated in a variety of malignant cancers. It plays a fundamental role in numerous cellular biological processes, such as cell proliferation, apoptosis, migration, invasion, autophagy, angiogenesis and glycolysis. In addition, studies have shown that miR­409­3p is expected to become a non­invasive biomarker. Identifying the molecular mechanisms underlying miR­409­3p­mediated tumor progression will help investigate miR­409­3p­based targeted therapy for human cancers. The present review comprehensively summarized the recently published literature on miR­409­3p, with a focus on the regulation and function of miR­409­3p in various types of cancer, and discussed the clinical implications of miR­409­3p, providing new insight for the diagnosis and treatment of cancers.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Molecular Targeted Therapy/methods , Apoptosis/genetics , Cell Movement/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...