Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.327
Filter
1.
J Exp Clin Cancer Res ; 43(1): 155, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822401

ABSTRACT

Longitudinal sampling of tumor tissue from patients with solid cancers, aside from melanoma and a few other cases, is often unfeasible, and thus may not capture the plasticity of interactions between the tumor and immune system under selective pressure of a given therapy. Peripheral blood analyses provide salient information about the human peripheral immunome while offering technical and practical advantages over traditional tumor biopsies, and should be utilized where possible alongside interrogation of the tumor. Some common blood-based biomarkers used to study the immune response include immune cell subsets, circulating tumor DNA, and protein analytes such as cytokines. With the recent explosion of immune checkpoint inhibitors (ICI) as a modality of treatment in multiple cancer types, soluble immune checkpoints have become a relevant area of investigation for peripheral immune-based biomarkers. However, the exact functions of soluble immune checkpoints and their roles in cancer for the most part remain unclear. This review discusses current literature on the production, function, and expression of nine soluble immune checkpoints - sPD-L1, sPD-1, sCTLA4, sCD80, sTIM3, sLAG3, sB7-H3, sBTLA, and sHVEM - in patients with solid tumors, and explores their role as biomarkers of response to ICI as well as to conventional therapies (chemotherapy, radiotherapy, targeted therapy, and surgery) in cancer patients.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Prognosis , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Proteins/metabolism , Biomarkers, Tumor , Immunotherapy/methods
2.
Mol Cancer ; 23(1): 117, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824567

ABSTRACT

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods
3.
Immunol Lett ; 267: 106864, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705481

ABSTRACT

Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.


Subject(s)
Immunotherapy , Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Animals , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Microenvironment/immunology , Macrophages/immunology , Macrophages/metabolism , Cellular Reprogramming/immunology , Macrophage Activation/immunology
4.
J Immunother Cancer ; 12(5)2024 May 30.
Article in English | MEDLINE | ID: mdl-38816232

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS: We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS: We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS: Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER: NCT00068003, NCT01174121, and NCT03412877.


Subject(s)
Antigens, Neoplasm , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Mice , Immunologic Memory , Animals , Female , Phenotype , Neoplasms/immunology
5.
J Immunother Cancer ; 12(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38821717

ABSTRACT

INTRODUCTION: The tissue immune microenvironment is associated with key aspects of tumor biology. The interaction between the immune system and cancer cells has predictive and prognostic potential across different tumor types. Spatially resolved tissue-based technologies allowed researchers to simultaneously quantify different immune populations in tumor samples. However, bare quantification fails to harness the spatial nature of tissue-based technologies. Tumor-immune interactions are associated with specific spatial patterns that can be measured. In recent years, several computational tools have been developed to increase our understanding of these spatial patterns. TOPICS COVERED: In this review, we cover standard techniques as well as new advances in the field of spatial analysis of the immune microenvironment. We focused on marker quantification, spatial intratumor heterogeneity analysis, cell‒cell spatial interaction studies and neighborhood analyses.


Subject(s)
Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Neoplasms/immunology , Neoplasms/diagnostic imaging , Neoplasms/pathology , Animals
6.
J Immunother Cancer ; 12(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38821716

ABSTRACT

Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.


Subject(s)
Cytokines , Immunotherapy , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Cytokines/metabolism , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Animals , Simplexvirus/immunology , Simplexvirus/genetics , Herpesvirus 1, Human/immunology
7.
Pharmacol Res ; 204: 107212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749377

ABSTRACT

Triggering receptor expressed on myeloid cells 1 (TREM1) is a cell surface receptor expressed on neutrophils, monocytes and some tissue macrophages, where it functions as an immunoregulator that controls myeloid cell responses. The activation of TREM1 is suggested to be an upregulation-based, ligands-induced and structural multimerization-mediated process, in which damage- and pathogen-associated molecular patterns play important roles. Activated TREM1 initiates an array of downstream signaling pathways that ultimately result in the production of pro-inflammatory cytokines and chemokines, whereby it functions as an amplifier of inflammation and is implicated in the pathogenesis of many inflammation-associated diseases. Over the past decade, there has been growing evidence for the involvement of TREM1 overactivation in tumor stroma inflammation and cancer progression. Indeed, it was shown that TREM1 promotes tumor progression, immunosuppression, and resistance to therapy by activating tumor-infiltrating myeloid cells. TREM1-deficiency or blockade provide protection against tumors and reverse the resistance to anti-PD-1/PD-L1 therapy and arginine-deprivation therapy in preclinical models. Here, we first review the structure, activation modes and signaling pathways of TREM1 and emphasize the role of soluble TREM1 as a biomarker of infection and cancer. We then focus on the role of TREM1 in cancer and systematically summarize its expression patterns, upregulation mechanisms and functions in tumor development and progression. Lastly, we discuss the therapeutic prospects of TREM1 inhibition, via effective pharmacological inhibitors, in treating cancer and other diseases.


Subject(s)
Neoplasms , Signal Transduction , Triggering Receptor Expressed on Myeloid Cells-1 , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
9.
Front Immunol ; 15: 1399926, 2024.
Article in English | MEDLINE | ID: mdl-38817608

ABSTRACT

Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.


Subject(s)
Immunotherapy , Membrane Proteins , Neoplasms , Nucleotidyltransferases , Signal Transduction , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunity, Innate , Adaptive Immunity
10.
Sci Immunol ; 9(95): eadl2171, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820140

ABSTRACT

Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.


Subject(s)
Mice, Inbred C57BL , RNA-Binding Proteins , Animals , RNA-Binding Proteins/immunology , RNA-Binding Proteins/genetics , Mice , Humans , Immune Evasion , Tumor Escape/immunology , Mice, Knockout , Neoplasms/immunology , Neoplasms/genetics , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , Female
11.
Biomaterials ; 309: 122607, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759487

ABSTRACT

The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Receptors, Chimeric Antigen/immunology , Humans , Animals , Cell Line, Tumor , Hydrogen-Ion Concentration , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Mice , ErbB Receptors/metabolism , T-Lymphocytes/immunology , Female
12.
Front Immunol ; 15: 1378813, 2024.
Article in English | MEDLINE | ID: mdl-38720892

ABSTRACT

Background: Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells. Methods: We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). Results: NILK-2401 is a fully human BsAb binding the CEACAM5 N-terminal domain on tumor cells by its lambda light chain arm with an affinity of ≈4 nM and CD47 with its kappa chain arm with an intendedly low affinity of ≈500 nM to enabling tumor-specific blockade of the CD47-SIRPα interaction. For increased activity, NILK-2401 features a functional IgG1 Fc-part. NILK-2401 eliminates CEACAM5-positive tumor cell lines (3/3 colorectal, 2/2 gastric, 2/2 lung) with EC50 for antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity ranging from 0.38 to 25.84 nM and 0.04 to 0.25 nM, respectively. NILK-2401 binds neither CD47-positive/CEACAM5-negative cell lines nor primary epithelial cells. No erythrophagocytosis or platelet activation is observed. Quantification of the pre-existing NILK-2401-reactive T-cell repertoire in the blood of 14 healthy donors with diverse HLA molecules shows a low immunogenic potential. In vivo, NILK-2401 significantly delayed tumor growth in a NOD-SCID colon cancer model and a syngeneic mouse model using human CD47/human SIRPα transgenic mice and prolonged survival. In cynomolgus monkeys, single doses of 0.5 and 20 mg/kg were well tolerated; PK linked to anti-CD47 and Fc-binding seemed to be more than dose-proportional for Cmax and AUC0-inf. Data were validated in human FcRn TG32 mice. Combination of a CEACAM5-targeting T-cell engager (NILK-2301) with NILK-2401 can either boost NILK-2301 activity (Emax) up to 2.5-fold or allows reaching equal NILK-2301 activity at >600-fold (LS174T) to >3,000-fold (MKN-45) lower doses. Conclusion: NILK-2401 combines promising preclinical activity with limited potential side effects due to the tumor-targeted blockade of CD47 and low immunogenicity and is planned to enter clinical testing.


Subject(s)
Antibodies, Bispecific , CD47 Antigen , Carcinoembryonic Antigen , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Animals , Mice , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Cell Line, Tumor , Carcinoembryonic Antigen/immunology , Xenograft Model Antitumor Assays , Neoplasms/immunology , Neoplasms/drug therapy , Female , Macaca fascicularis , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/immunology , GPI-Linked Proteins
13.
Cell Host Microbe ; 32(5): 627-630, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723599

ABSTRACT

Microbial-based therapies have the potential to combat immunotherapy resistance, extending the boundaries of oncological therapeutics. In a recent issue of Cell, Jia et al. demonstrates an example of microbial collaboration to produce a postbiotic that promotes the stemness program of CD8+ T cells to augment immunotherapy at the pan-cancer level.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Indoles , Animals , Mice
14.
Front Immunol ; 15: 1385762, 2024.
Article in English | MEDLINE | ID: mdl-38707901

ABSTRACT

The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.


Subject(s)
Placenta , Humans , Pregnancy , Female , Placenta/immunology , Placenta/metabolism , Animals , Placentation , Endometrium/immunology , Endometrium/metabolism , Neoplasms/immunology , Neoplasms/etiology , Embryo Implantation/immunology
15.
Int J Nanomedicine ; 19: 3919-3942, 2024.
Article in English | MEDLINE | ID: mdl-38708176

ABSTRACT

Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.


Subject(s)
Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Nanomedicine/methods , Animals , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 362-366, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710519

ABSTRACT

Ferroptosis is a novel form of cell death that is induced by excessive accumulation of ferrous ions and lipid peroxides. It triggers the release of damage-associated molecular patterns through autophagy-dependent mechanisms, serving as an adjunct to immunogenic cell death and activating both adaptive and innate immunity. In the tumor microenvironment, the regulation and influence of tumor cells and immune cells undergoing ferroptosis are regulated by various factors, which plays a crucial role in tumor development, treatment, and prognosis. This article provides an overview of the biological effects of ferroptosis on immune cells such as T cells, macrophages, neutrophils and B cells and tumor cells in the tumor microenvironment.


Subject(s)
Ferroptosis , Neoplasms , Tumor Microenvironment , Ferroptosis/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment/immunology , Animals , Macrophages/immunology , Neutrophils/immunology , Autophagy/immunology , Immunity, Innate , T-Lymphocytes/immunology , B-Lymphocytes/immunology
17.
PLoS One ; 19(5): e0303171, 2024.
Article in English | MEDLINE | ID: mdl-38768113

ABSTRACT

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


Subject(s)
High-Throughput Nucleotide Sequencing , Tumor Microenvironment , Animals , Mice , Tumor Microenvironment/immunology , High-Throughput Nucleotide Sequencing/methods , Interferon-gamma/genetics , Interferon-gamma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Mice, Inbred C57BL , RNA, Messenger/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/genetics , Neoplasms/immunology , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Expression Profiling/methods
18.
Cancer Immunol Immunother ; 73(7): 126, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733406

ABSTRACT

BACKGROUND: Immuno-oncology (IO) drugs are essential for treating various cancer types; however, safety concerns persist in older patients. Although the incidence of immune-related adverse events (irAEs) is similar among age groups, higher rates of hospitalization or discontinuation of IO therapy have been reported in older patients. Limited research exists on IO drug safety and risk factors in older adults. Our investigation aimed to assess the incidence of irAEs and identify the potential risk factors associated with their development. METHODS: This retrospective analysis reviewed the clinical data extracted from the medical records of patients aged > 80 years who underwent IO treatment at our institution. Univariate and multivariate analyses were performed to assess the incidence of irAEs. RESULTS: Our study included 181 patients (median age: 82 years, range: 80-94), mostly men (73%), with a performance status of 0-1 in 87% of the cases; 64% received IO monotherapy. irAEs occurred in 35% of patients, contributing to IO therapy discontinuation in 19%. Our analysis highlighted increased body mass index, eosinophil counts, and albumin levels in patients with irAEs. Eosinophil count emerged as a significant risk factor for any grade irAEs, particularly Grade 3 or higher, with a cutoff of 118 (/µL). The group with eosinophil counts > 118 had a higher frequency of irAEs, and Grade 3 or higher events than the group with counts ≤ 118. CONCLUSION: IO therapy is a safe treatment option for patients > 80 years old. Furthermore, patients with elevated eosinophil counts at treatment initiation should be cautiously managed.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Retrospective Studies , Male , Female , Aged, 80 and over , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/immunology , Risk Factors , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/etiology , Incidence
20.
ACS Nano ; 18(20): 13226-13240, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712706

ABSTRACT

Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.


Subject(s)
Epigenesis, Genetic , Immunotherapy , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Animals , Epigenesis, Genetic/drug effects , Mice , T-Lymphocytes, Cytotoxic/immunology , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Nanoparticles/chemistry , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...