Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52.795
Filter
1.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822973

ABSTRACT

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Disease Progression , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Apoptosis/genetics
2.
Proc Natl Acad Sci U S A ; 121(24): e2320867121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838015

ABSTRACT

O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.


Subject(s)
Cytoskeleton , LIM Domain Proteins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Cytoskeleton/metabolism , Acetylglucosamine/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Glycosylation , Hydrolysis , Mutation , Cell Movement , Antigens, Neoplasm , Hyaluronoglucosaminidase , Histone Acetyltransferases
3.
Article in English | MEDLINE | ID: mdl-38830699

ABSTRACT

Transcription factors play crucial roles in cancer, and oncogenic counterparts of cellular transcription factors are present in a number of tumor viruses. It was studies in the early 1980s that first showed tumor viruses could encode nuclear as well as cytoplasmic oncoproteins. Subsequent work provided detailed insight into their mechanisms of action, as well as potential therapeutic avenues. In this excerpt from his forthcoming book on the history of cancer research, Joe Lipsick looks back at early work on nuclear oncogenes, including the discovery of MYC, MYB, FOS and JUN, Rel/NF-κB, and nuclear receptors such as the retinoic acid receptor and thyroid hormone receptor.


Subject(s)
Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Neoplasms/genetics , Neoplasms/metabolism , History, 20th Century , Oncogenes , History, 21st Century , Animals
4.
Front Immunol ; 15: 1302909, 2024.
Article in English | MEDLINE | ID: mdl-38846934

ABSTRACT

Background: Membranous nephropathy (MN) is an autoimmune disease and represents the most prevalent type of renal pathology in adult patients afflicted with nephrotic syndrome. Despite substantial evidence suggesting a possible link between MN and cancer, the precise underlying mechanisms remain elusive. Methods: In this study, we acquired and integrated two MN datasets (comprising a single-cell dataset and a bulk RNA-seq dataset) from the Gene Expression Omnibus database for differential expression gene (DEG) analysis, hub genes were obtained by LASSO and random forest algorithms, the diagnostic ability of hub genes was assessed using ROC curves, and the degree of immune cell infiltration was evaluated using the ssGSEA function. Concurrently, we gathered pan-cancer-related genes from the TCGA and GTEx databases, to analyze the expression, mutation status, drug sensitivity and prognosis of hub genes in pan-cancer. Results: We conducted intersections between the set of 318 senescence-related genes and the 366 DEGs, resulting in the identification of 13 senescence-related DEGs. Afterwards, we meticulously analyzed these genes using the LASSO and random forest algorithms, which ultimately led to the discovery of six hub genes through intersection (PIK3R1, CCND1, TERF2IP, SLC25A4, CAPN2, and TXN). ROC curves suggest that these hub genes have good recognition of MN. After performing correlation analysis, examining immune infiltration, and conducting a comprehensive pan-cancer investigation, we validated these six hub genes through immunohistochemical analysis using human renal biopsy tissues. The pan-cancer analysis notably accentuates the robust association between these hub genes and the prognoses of individuals afflicted by diverse cancer types, further underscoring the importance of mutations within these hub genes across various cancers. Conclusion: This evidence indicates that these genes could potentially play a pivotal role as a critical link connecting MN and cancer. As a result, they may hold promise as valuable targets for intervention in cases of both MN and cancer.


Subject(s)
Glomerulonephritis, Membranous , Humans , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/metabolism , Gene Expression Profiling , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Computational Biology/methods , Prognosis , Biomarkers, Tumor/genetics , Transcriptome , Gene Regulatory Networks , Biomarkers , Databases, Genetic
5.
Biochemistry (Mosc) ; 89(4): 737-746, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831509

ABSTRACT

Identification of genes and molecular pathways with congruent profiles in the proteomic and transcriptomic datasets may result in the discovery of promising transcriptomic biomarkers that would be more relevant to phenotypic changes. In this study, we conducted comparative analysis of 943 paired RNA and proteomic profiles obtained for the same samples of seven human cancer types from The Cancer Genome Atlas (TCGA) and NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) [two major open human cancer proteomic and transcriptomic databases] that included 15,112 protein-coding genes and 1611 molecular pathways. Overall, our findings demonstrated statistically significant improvement of the congruence between RNA and proteomic profiles when performing analysis at the level of molecular pathways rather than at the level of individual gene products. Transition to the molecular pathway level of data analysis increased the correlation to 0.19-0.57 (Pearson) and 0.14-057 (Spearman), or 2-3-fold for some cancer types. Evaluating the gain of the correlation upon transition to the data analysis the pathway level can be used to refine the omics data by identifying outliers that can be excluded from the comparison of RNA and proteomic profiles. We suggest using sample- and gene-wise correlations for individual genes and molecular pathways as a measure of quality of RNA/protein paired molecular data. We also provide a database of human genes, molecular pathways, and samples related to the correlation between RNA and protein products to facilitate an exploration of new cancer transcriptomic biomarkers and molecular mechanisms at different levels of human gene expression.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Proteomics/methods , Transcriptome , Databases, Genetic , RNA/metabolism , RNA/genetics , Gene Expression Profiling , Data Accuracy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic
6.
Nat Commun ; 15(1): 4682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824130

ABSTRACT

Interleukin-6 (IL-6) has been long considered a key player in cancer cachexia. It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia. However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, is a critical mediator of IL-6 function in cancer cachexia in male mice. We find that circulating IL-6 can rapidly enter the AP and activate neurons in the AP and its associated network. Peripheral tumor, known to increase circulating IL-6, leads to elevated IL-6 in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons and AP network hyperactivity. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an anti-IL-6 antibody attenuates cachexia and the hyperactivity in the AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra, the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing Gfral-expressing AP neurons also attenuates cancer cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer cachexia.


Subject(s)
Cachexia , Interleukin-6 , Neurons , Receptors, Interleukin-6 , Animals , Cachexia/metabolism , Cachexia/etiology , Interleukin-6/metabolism , Male , Neurons/metabolism , Mice , Receptors, Interleukin-6/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/complications , Cell Line, Tumor , Humans
7.
Mol Biol Rep ; 51(1): 717, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824197

ABSTRACT

Vascular endothelial cells (ECs) are monolayers of cells arranged in the inner walls of blood vessels. Under normal physiological conditions, ECs play an essential role in angiogenesis, homeostasis and immune response. Emerging evidence suggests that abnormalities in EC metabolism, especially aerobic glycolysis, are associated with the initiation and progression of various diseases, including multiple cancers. In this review, we discuss the differences in aerobic glycolysis of vascular ECs under normal and pathological conditions, focusing on the recent research progress of aerobic glycolysis in tumor vascular ECs and potential strategies for cancer therapy.


Subject(s)
Endothelial Cells , Glycolysis , Neoplasms , Neovascularization, Pathologic , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Animals
8.
Cell Commun Signal ; 22(1): 310, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844908

ABSTRACT

Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.


Subject(s)
AMP-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction/drug effects
9.
J Hematol Oncol ; 17(1): 41, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844964

ABSTRACT

Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.


Subject(s)
Ferroptosis , Humans , Animals , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Lipid Peroxidation
10.
Mol Cancer ; 23(1): 122, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844984

ABSTRACT

Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Animals , Epigenesis, Genetic , Molecular Targeted Therapy , Epithelial-Mesenchymal Transition
11.
Front Immunol ; 15: 1389194, 2024.
Article in English | MEDLINE | ID: mdl-38840905

ABSTRACT

Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.


Subject(s)
Calcium Channels , Endosomes , Lysosomes , Neoplasms , Transient Receptor Potential Channels , Humans , Neoplasms/immunology , Neoplasms/metabolism , Lysosomes/metabolism , Lysosomes/immunology , Endosomes/metabolism , Endosomes/immunology , Animals , Transient Receptor Potential Channels/metabolism , Calcium Channels/metabolism , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/immunology , Two-Pore Channels
12.
Front Immunol ; 15: 1395714, 2024.
Article in English | MEDLINE | ID: mdl-38840921

ABSTRACT

Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of ß-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.


Subject(s)
Cell Adhesion , Endothelium, Vascular , Galectins , Humans , Galectins/metabolism , Animals , Endothelium, Vascular/metabolism , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Endothelial Cells/metabolism , Neoplasms/pathology , Neoplasms/immunology , Neoplasms/metabolism
13.
Int J Nanomedicine ; 19: 4893-4906, 2024.
Article in English | MEDLINE | ID: mdl-38828202

ABSTRACT

Introduction: The tumor microenvironment (TME) has attracted considerable attention as a potential therapeutic target for cancer. High levels of reactive oxygen species (ROS) in the TME may act as a stimulus for drug release. In this study, we have developed ROS-responsive hyaluronic acid-bilirubin nanoparticles (HABN) loaded with doxorubicin (DOX@HABN) for the specific delivery and release of DOX in tumor tissue. The hyaluronic acid shell of the nanoparticles acts as an active targeting ligand that can specifically bind to CD44-overexpressing tumors. The bilirubin core has intrinsic anti-cancer activity and ROS-responsive solubility change properties. Methods & Results: DOX@HABN showed the HA shell-mediated targeting ability, ROS-responsive disruption leading to ROS-mediated drug release, and synergistic anti-cancer activity against ROS-overproducing CD44-overexpressing HeLa cells. Additionally, intravenously administered HABN-Cy5.5 showed remarkable tumor-targeting ability in HeLa tumor-bearing mice with limited distribution in major organs. Finally, intravenous injection of DOX@HABN into HeLa tumor-bearing mice showed synergistic anti-tumor efficacy without noticeable side effects. Conclusion: These findings suggest that DOX@HABN has significant potential as a cancer-targeting and TME ROS-responsive nanomedicine for targeted cancer treatment.


Subject(s)
Bilirubin , Doxorubicin , Hyaluronan Receptors , Hyaluronic Acid , Nanomedicine , Nanoparticles , Reactive Oxygen Species , Tumor Microenvironment , Hyaluronic Acid/chemistry , Tumor Microenvironment/drug effects , Animals , Reactive Oxygen Species/metabolism , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Nanoparticles/chemistry , Mice , HeLa Cells , Hyaluronan Receptors/metabolism , Bilirubin/chemistry , Bilirubin/pharmacology , Bilirubin/pharmacokinetics , Drug Liberation , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Neoplasms/metabolism
14.
Artif Cells Nanomed Biotechnol ; 52(1): 345-354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38829715

ABSTRACT

Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.


3D microencapsulation models of cancer offer a customisable platform to mimic key aspects of solid tumour physiology in vitro. However, many 3D models do not recapitulate the hypoxic conditions and altered tissue stiffness established in many tumour types and stages. Furthermore, microparticles for cancer cell encapsulation are commonly produced using methods that are not necessarily suitable for scale up to high-throughput manufacturing. This review aims to evaluate current technologies for cancer cell-laden microparticle production with a focus on physiological relevance and scalability. Emerging techniques will then be touched on, for production of uniform microparticles suitable for high-throughput drug discovery applications.


Subject(s)
Drug Discovery , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Discovery/methods , Cell Encapsulation/methods , Models, Biological , Capsules , Animals , Drug Compounding/methods , Tumor Microenvironment/drug effects
15.
Cell Death Dis ; 15(6): 388, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830901

ABSTRACT

Vitamin B6 is a water-soluble vitamin which possesses antioxidant properties. Its catalytically active form, pyridoxal 5'-phosphate (PLP), is a crucial cofactor for DNA and amino acid metabolism. The inverse correlation between vitamin B6 and cancer risk has been observed in several studies, although dietary vitamin B6 intake sometimes failed to confirm this association. However, the molecular link between vitamin B6 and cancer remains elusive. Previous work has shown that vitamin B6 deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, suggesting that genome instability may correlate the lack of this vitamin to cancer. Here we provide evidence in support of this hypothesis. Firstly, we show that PLP deficiency, induced by the PLP antagonists 4-deoxypyridoxine (4DP) or ginkgotoxin (GT), promoted tumorigenesis in eye larval discs transforming benign RasV12 tumors into aggressive forms. In contrast, PLP supplementation reduced the development of tumors. We also show that low PLP levels, induced by 4DP or by silencing the sgllPNPO gene involved in PLP biosynthesis, worsened the tumor phenotype in another Drosophila cancer model generated by concomitantly activating RasV12 and downregulating Discs-large (Dlg) gene. Moreover, we found that RasV12 eye discs from larvae reared on 4DP displayed CABs, reactive oxygen species (ROS) and low catalytic activity of serine hydroxymethyltransferase (SHMT), a PLP-dependent enzyme involved in thymidylate (dTMP) biosynthesis, in turn required for DNA replication and repair. Feeding RasV12 4DP-fed larvae with PLP or ascorbic acid (AA) plus dTMP, rescued both CABs and tumors. The same effect was produced by overexpressing catalase in RasV12 DlgRNAi 4DP-fed larvae, thus allowing to establish a relationship between PLP deficiency, CABs, and cancer. Overall, our data provide the first in vivo demonstration that PLP deficiency can impact on cancer by increasing genome instability, which is in turn mediated by ROS and reduced dTMP levels.


Subject(s)
Vitamin B 6 Deficiency , Animals , Vitamin B 6 Deficiency/metabolism , Vitamin B 6 Deficiency/complications , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Vitamin B 6/metabolism , Vitamin B 6/pharmacology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila/metabolism , Pyridoxal Phosphate/metabolism , Reactive Oxygen Species/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Carcinogenesis/drug effects , ras Proteins/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Larva/metabolism , Humans
16.
Int J Oncol ; 65(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38847236

ABSTRACT

Glutathione (GSH)­degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ­glutamyl transpeptidase (GGT) and intracellular GSH­specific γ­glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH­degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH­degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.


Subject(s)
Glutathione , Neoplasms , gamma-Glutamylcyclotransferase , gamma-Glutamyltransferase , Humans , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/enzymology , Glutathione/metabolism , gamma-Glutamylcyclotransferase/metabolism , gamma-Glutamylcyclotransferase/genetics , gamma-Glutamyltransferase/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Animals , Gene Expression Regulation, Neoplastic , Oxidative Stress , Endoplasmic Reticulum Stress
17.
FASEB J ; 38(11): e23734, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847486

ABSTRACT

The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.


Subject(s)
Cell Cycle , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Animals , Molecular Targeted Therapy/methods
18.
Technol Cancer Res Treat ; 23: 15330338241259780, 2024.
Article in English | MEDLINE | ID: mdl-38847653

ABSTRACT

As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.


Subject(s)
Neoplasms , Signal Transduction , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Neoplasms/metabolism , Biomarkers, Tumor , Reactive Oxygen Species/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Animals , Phosphatidylinositol 3-Kinases/metabolism , Disease Management
19.
Nat Commun ; 15(1): 3860, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719824

ABSTRACT

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Subject(s)
Cholesterol , Proteome , Humans , Cholesterol/blood , Cholesterol/metabolism , Proteome/metabolism , Female , Male , Middle Aged , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/blood , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/blood , Biomarkers/blood , Aged , Triiodothyronine/blood , Machine Learning , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/blood , Neoplasms/metabolism , Proteomics/methods
20.
Med Oncol ; 41(6): 145, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727885

ABSTRACT

Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Neoplasms , Polyelectrolytes , Humans , Polyelectrolytes/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Precision Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...