Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.830
Filter
1.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822973

ABSTRACT

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Disease Progression , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Apoptosis/genetics
2.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823920

ABSTRACT

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Subject(s)
Acrylic Resins , Hydrogels , Spheroids, Cellular , beta-Cyclodextrins , Spheroids, Cellular/drug effects , Humans , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , HeLa Cells , Animals , Mice , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Methacrylates/chemistry , Coculture Techniques , Neoplasms/pathology
3.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829450

ABSTRACT

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Subject(s)
Antineoplastic Agents , Cell Culture Techniques , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Doxorubicin/pharmacology , Paclitaxel/pharmacology , Cisplatin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Culture Techniques, Three Dimensional/methods , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Survival/drug effects
4.
Biochemistry (Mosc) ; 89(4): 637-652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831501

ABSTRACT

Molecular genetic analysis of tumor tissues is the most important step towards understanding the mechanisms of cancer development; it is also necessary for the choice of targeted therapy. The Hi-C (high-throughput chromatin conformation capture) technology can be used to detect various types of genomic variants, including balanced chromosomal rearrangements, such as inversions and translocations. We propose a modification of the Hi-C method for the analysis of chromatin contacts in formalin-fixed paraffin-embedded (FFPE) sections of tumor tissues. The developed protocol allows to generate high-quality Hi-C data and detect all types of chromosomal rearrangements. We have analyzed various databases to compile a comprehensive list of translocations that hold clinical importance for the targeted therapy selection. The practical value of molecular genetic testing is its ability to influence the treatment strategies and to provide prognostic insights. Detecting specific chromosomal rearrangements can guide the choice of the targeted therapies, which is a critical aspect of personalized medicine in oncology.


Subject(s)
Formaldehyde , Neoplasms , Paraffin Embedding , Humans , Neoplasms/genetics , Neoplasms/pathology , Formaldehyde/chemistry , Translocation, Genetic , Tissue Fixation , Chromatin/genetics , Chromatin/metabolism , Chromatin/chemistry
5.
Artif Cells Nanomed Biotechnol ; 52(1): 345-354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38829715

ABSTRACT

Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.


3D microencapsulation models of cancer offer a customisable platform to mimic key aspects of solid tumour physiology in vitro. However, many 3D models do not recapitulate the hypoxic conditions and altered tissue stiffness established in many tumour types and stages. Furthermore, microparticles for cancer cell encapsulation are commonly produced using methods that are not necessarily suitable for scale up to high-throughput manufacturing. This review aims to evaluate current technologies for cancer cell-laden microparticle production with a focus on physiological relevance and scalability. Emerging techniques will then be touched on, for production of uniform microparticles suitable for high-throughput drug discovery applications.


Subject(s)
Drug Discovery , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Discovery/methods , Cell Encapsulation/methods , Models, Biological , Capsules , Animals , Drug Compounding/methods , Tumor Microenvironment/drug effects
6.
Cell Death Dis ; 15(6): 388, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830901

ABSTRACT

Vitamin B6 is a water-soluble vitamin which possesses antioxidant properties. Its catalytically active form, pyridoxal 5'-phosphate (PLP), is a crucial cofactor for DNA and amino acid metabolism. The inverse correlation between vitamin B6 and cancer risk has been observed in several studies, although dietary vitamin B6 intake sometimes failed to confirm this association. However, the molecular link between vitamin B6 and cancer remains elusive. Previous work has shown that vitamin B6 deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, suggesting that genome instability may correlate the lack of this vitamin to cancer. Here we provide evidence in support of this hypothesis. Firstly, we show that PLP deficiency, induced by the PLP antagonists 4-deoxypyridoxine (4DP) or ginkgotoxin (GT), promoted tumorigenesis in eye larval discs transforming benign RasV12 tumors into aggressive forms. In contrast, PLP supplementation reduced the development of tumors. We also show that low PLP levels, induced by 4DP or by silencing the sgllPNPO gene involved in PLP biosynthesis, worsened the tumor phenotype in another Drosophila cancer model generated by concomitantly activating RasV12 and downregulating Discs-large (Dlg) gene. Moreover, we found that RasV12 eye discs from larvae reared on 4DP displayed CABs, reactive oxygen species (ROS) and low catalytic activity of serine hydroxymethyltransferase (SHMT), a PLP-dependent enzyme involved in thymidylate (dTMP) biosynthesis, in turn required for DNA replication and repair. Feeding RasV12 4DP-fed larvae with PLP or ascorbic acid (AA) plus dTMP, rescued both CABs and tumors. The same effect was produced by overexpressing catalase in RasV12 DlgRNAi 4DP-fed larvae, thus allowing to establish a relationship between PLP deficiency, CABs, and cancer. Overall, our data provide the first in vivo demonstration that PLP deficiency can impact on cancer by increasing genome instability, which is in turn mediated by ROS and reduced dTMP levels.


Subject(s)
Vitamin B 6 Deficiency , Animals , Vitamin B 6 Deficiency/metabolism , Vitamin B 6 Deficiency/complications , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Vitamin B 6/metabolism , Vitamin B 6/pharmacology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila/metabolism , Pyridoxal Phosphate/metabolism , Reactive Oxygen Species/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Carcinogenesis/drug effects , ras Proteins/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Larva/metabolism , Humans
7.
J Transl Med ; 22(1): 532, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831284

ABSTRACT

BACKGROUND: The Accum® platform was initially designed to accumulate biomedicines in target cells by inducing endosomal-to-cytosol escape. Interestingly however, the use of unconjugated Accum® was observed to trigger cell death in a variety of cancer cell lines; a property further exploited in the development of Accum®-based anti-cancer therapies. Despite the impressive pro-killing abilities of the parent molecule, some cancer cell lines exhibited resistance. This prompted us to test additional Accum® variants, which led to the identification of the AccuTOX® molecule. METHODS: A series of flow-cytometry and cell-based assays were used to assess the pro-killing properties of AccuTOX® along with its ability to trigger the production of reactive oxygen species (ROS), endosomal breaks and antigen presentation. RNA-seq was also conducted to pinpoint the most prominent processes modulated by AccuTOX® treatment in EL4 T-cell lymphoma. Finally, the therapeutic potency of intratumorally-injected AccuTOX® was evaluated in three different murine solid tumor models (EL4, E0771 and B16) both as a monotherapy or in combination with three immune-checkpoint inhibitors (ICI). RESULTS: In total, 7 Accum® variants were screened for their ability to induce complete cell death in 3 murine (EL4, B16 and E0771) and 3 human (MBA-MD-468, A549, and H460) cancer cell lines of different origins. The selected compound (hereafter refereed to as AccuTOX®) displayed an improved killing efficiency (~ 5.5 fold compared to the parental Accum®), while retaining its ability to trigger immunogenic cell death, ROS production, and endosomal breaks. Moreover, transcriptomic analysis revealed that low dose AccuTOX® enhances H2-Kb cell surface expression as well as antigen presentation in cancer cells. The net outcome culminates in impaired T-cell lymphoma, breast cancer and melanoma growth in vivo especially when combined with anti-CD47, anti-CTLA-4 or anti-PD-1 depending on the animal model. CONCLUSIONS: AccuTOX® exhibits enhanced cancer killing properties, retains all the innate characteristics displayed by the parental Accum® molecule, and synergizes with various ICI in controlling tumor growth. These observations will certainly pave the path to continue the clinical development of this lead compound against multiple solid tumor indications.


Subject(s)
Drug Synergism , Immune Checkpoint Inhibitors , Reactive Oxygen Species , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Humans , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/immunology , Mice, Inbred C57BL , Female , Cell Death/drug effects
8.
Mol Biol Rep ; 51(1): 717, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824197

ABSTRACT

Vascular endothelial cells (ECs) are monolayers of cells arranged in the inner walls of blood vessels. Under normal physiological conditions, ECs play an essential role in angiogenesis, homeostasis and immune response. Emerging evidence suggests that abnormalities in EC metabolism, especially aerobic glycolysis, are associated with the initiation and progression of various diseases, including multiple cancers. In this review, we discuss the differences in aerobic glycolysis of vascular ECs under normal and pathological conditions, focusing on the recent research progress of aerobic glycolysis in tumor vascular ECs and potential strategies for cancer therapy.


Subject(s)
Endothelial Cells , Glycolysis , Neoplasms , Neovascularization, Pathologic , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Animals
9.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833034

ABSTRACT

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Subject(s)
Benzofurans , Cell Differentiation , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Differentiation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Mice, Inbred C57BL , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
10.
Front Immunol ; 15: 1361596, 2024.
Article in English | MEDLINE | ID: mdl-38690266

ABSTRACT

Mesenchymal stromal/stem cells (MSCs), which are distributed in many tissues including bone marrow, have been reported to play a critical role in tumor development. While bone marrow, the primary site for hematopoiesis, is important for establishing the immune system, whether MSCs in the bone marrow can promote tumor growth via influencing hematopoiesis remains unclear. We observed that the numbers of MSCs and neutrophils were increased in bone marrow in tumor-bearing mice. Moreover, co-culture assay showed that MSCs strongly protected neutrophils from apoptosis and induced their maturation. G-CSF and GM-CSF have been well-documented to be associated with neutrophil formation. We found a remarkably increased level of G-CSF, but not GM-CSF, in the supernatant of MSCs and the serum of tumor-bearing mice. The G-CSF expression can be enhanced with inflammatory cytokines (IFNγ and TNFα) stimulation. Furthermore, we found that IFNγ and TNFα-treated MSCs enhanced their capability of promoting neutrophil survival and maturation. Our results indicate that MSCs display robustly protective effects on neutrophils to contribute to tumor growth in bone niches.


Subject(s)
Cytokines , Mesenchymal Stem Cells , Neutrophils , Animals , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Mice , Cytokines/metabolism , Mice, Inbred C57BL , Coculture Techniques , Granulocyte Colony-Stimulating Factor/metabolism , Apoptosis , Tumor Necrosis Factor-alpha/metabolism , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/pathology
11.
Nihon Yakurigaku Zasshi ; 159(3): 169-172, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692882

ABSTRACT

Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.


Subject(s)
Neoplasms , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
12.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690738

ABSTRACT

Targeting tumor-associated macrophages (TAMs) is an emerging approach being tested in multiple clinical trials. TAMs, depending on their differentiation state, can exhibit pro- or antitumorigenic functions. For example, the M2-like phenotype represents a protumoral state that can stimulate tumor growth, angiogenesis, metastasis, therapy resistance, and immune evasion by expressing immune checkpoint proteins. In this issue of the JCI, Vaccaro and colleagues utilized an innovative drug screen approach to demonstrate that targeting driver oncogenic signaling pathways concurrently with anti-CD47 sensitizes tumor cells, causing them to undergo macrophage-induced phagocytosis. The combination treatment altered expression of molecules on the tumor cells that typically limit phagocytosis. It also reprogrammed macrophages to an M1-like antitumor state. Moreover, the approach was generalizable to tumor cells with different oncogenic pathways, opening the door to precision oncology-based rationale combination therapies that have the potential to improve outcomes for patients with oncogene-driven lung cancers and likely other cancer types.


Subject(s)
CD47 Antigen , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , CD47 Antigen/metabolism , CD47 Antigen/antagonists & inhibitors , Animals , Phagocytosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Macrophages/metabolism , Macrophages/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
13.
Wiley Interdiscip Rev RNA ; 15(3): e1851, 2024.
Article in English | MEDLINE | ID: mdl-38702938

ABSTRACT

Long noncoding RNAs (lncRNA) are a class of non-coding RNAs greater than 200 bp in length with limited peptide-coding function. The transcription of LINC00152 is derived from chromosome 2p11.2. Many studies prove that LINC00152 influences the progression of various tumors via promoting the tumor cells malignant phenotype, chemoresistance, and immune escape. LINC00152 is regulated by multiple transcription factors and DNA hypomethylation. In addition, LINC00152 participates in the regulation of complex molecular signaling networks through epigenetic regulation, protein interactions, and competitive endogenous RNA (ceRNA). Here, we provide a systematic review of the upstream regulatory factors of LINC00152 expression level in different types of tumors. In addition, we revisit the main functions and mechanisms of LINC00152 as driver oncogene and biomarker in pan-cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Subject(s)
Neoplasms , Oncogenes , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes/genetics , Gene Expression Regulation, Neoplastic
14.
J Cancer Res Clin Oncol ; 150(5): 226, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696003

ABSTRACT

High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.


Subject(s)
Linear Energy Transfer , Neoplasms , Radiation Tolerance , Humans , Neoplasms/radiotherapy , Neoplasms/pathology , DNA Damage/radiation effects , DNA Repair/radiation effects , Animals
15.
Sci Adv ; 10(18): eadn3448, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701211

ABSTRACT

Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology.


Subject(s)
Neoplasms , Phenotype , Tumor Microenvironment , Humans , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Hydrogen-Ion Concentration , Chemotaxis , Microfluidic Analytical Techniques
16.
Med Oncol ; 41(6): 139, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709365

ABSTRACT

To evaluate the association of standardized phase angle (SPA) with nutritional status, functional parameters, and postoperative outcomes in surgical cancer patients. This prospective study includes 59 cancer patients from Pelotas (Brazil) admitted for elective cancer surgery. We obtained the phase angle through Bioelectrical Impedance Analysis (BIA) and standardized it according to the population's reference values. We estimated the muscle mass using BIA for later calculation of the Skeletal Muscle Index (SMI) and performed handgrip strength (HGS) and gait speed (GS) tests. We used the Patient-Generated Subjective Global Assessment (PG-SGA) to assess the nutritional status. Postoperative complications and duration of hospital stay were evaluated as the outcomes. The prevalence of malnutrition in the sample was 28.8%, according to ASG-PPP. SPA was statistically lower in patients with malnutrition, with lower HGS and reduced GS. For postoperative outcomes, patients with severe complications and those with prolonged hospitalization also had lower SPA values. The greater the number of functional alterations in patients, the lower the SPA value, mainly when associated with reduced muscle mass assessed by BIA, suggesting that muscle mass reduction plays an important role in the association between functional alterations and phase angle in patients with cancer. According to the parameters used in this study, low SPA value was associated with impaired nutritional and functional status and negative outcomes in the analyzed sample.


Subject(s)
Muscle, Skeletal , Neoplasms , Nutritional Status , Postoperative Complications , Humans , Male , Female , Middle Aged , Prospective Studies , Neoplasms/surgery , Neoplasms/pathology , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Aged , Malnutrition , Hand Strength/physiology , Electric Impedance , Adult , Brazil/epidemiology , Length of Stay , Nutrition Assessment
17.
Methods Mol Biol ; 2800: 11-25, 2024.
Article in English | MEDLINE | ID: mdl-38709474

ABSTRACT

Fibroblasts are the major producers of the extracellular matrix and regulate its organization. Aberrant signaling in diseases such as fibrosis and cancer can impact the deposition of the matrix proteins, which can in turn act as an adhesion scaffold and signaling reservoir promoting disease progression. To study the composition and organization of the extracellular matrix as well as its interactions with (tumor) cells, this protocol describes the generation and analysis of 3D fibroblast-derived matrices and the investigation of (tumor) cells seeded onto the 3D scaffolds by immunofluorescent imaging and cell adhesion, colony formation, migration, and invasion/transmigration assays.


Subject(s)
Cell Adhesion , Cell Movement , Extracellular Matrix , Fibroblasts , Signal Transduction , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Cell Line, Tumor , Cell Culture Techniques/methods , Neoplasms/metabolism , Neoplasms/pathology , Cell Communication , Cell Culture Techniques, Three Dimensional/methods , Animals , Tissue Scaffolds/chemistry
18.
HLA ; 103(5): e15472, 2024 May.
Article in English | MEDLINE | ID: mdl-38699870

ABSTRACT

Immunotherapy using immune checkpoint inhibitors (ICIs) has shown superior efficacy compared with conventional chemotherapy in certain cancer types, establishing immunotherapy as the fourth standard treatment alongside surgical intervention, chemotherapy, and radiotherapy. In cancer immunotherapy employing ICIs, CD8-positive cytotoxic T lymphocytes are recognized as the primary effector cells. For effective clinical outcomes, it is essential that the targeted cancer cells express HLA class I molecules to present antigenic peptides derived from the tumor. However, cancer cells utilize various mechanisms to downregulate or lose HLA class I molecules from their surface, resulting in evasion from immune surveillance. Correlations between prognosis and the integrity of HLA class I molecules expressed by cancer cells have been consistently found across different types of cancer. This paper provides an overview of the regulatory mechanisms of HLA class I molecules and their role in cancer immunotherapy, with a particular emphasis on the significance of utilizing pathological tissues to evaluate HLA class I molecules expressed in cancer cells.


Subject(s)
Histocompatibility Antigens Class I , Immunotherapy , Neoplasms , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
20.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...