Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.526
Filter
1.
J Exp Clin Cancer Res ; 43(1): 156, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822429

ABSTRACT

BACKGROUND: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. METHODS: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. RESULTS: In response to increased fibronectin secretion and integrin ß1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/ß-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. CONCLUSIONS: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.


Subject(s)
Drug Resistance, Neoplasm , Frizzled Receptors , Neoplastic Stem Cells , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Cell Line, Tumor , Platinum/pharmacology , Platinum/therapeutic use , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects
2.
J Transl Med ; 22(1): 530, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831317

ABSTRACT

BACKGROUND: Cancer stem-like cells (CSCs) have been extensively researched as the primary drivers of therapy resistance and tumor relapse in patients with breast cancer. However, due to lack of specific molecular markers, increased phenotypic plasticity and no clear clinicopathological features, the assessment of CSCs presence and functionality in solid tumors is challenging. While several potential markers, such as CD24/CD44, have been proposed, the extent to which they truly represent the stem cell potential of tumors or merely provide static snapshots is still a subject of controversy. Recent studies have highlighted the crucial role of the tumor microenvironment (TME) in influencing the CSC phenotype in breast cancer. The interplay between the tumor and TME induces significant changes in the cancer cell phenotype, leading to the acquisition of CSC characteristics, therapeutic resistance, and metastatic spread. Simultaneously, CSCs actively shape their microenvironment by evading immune surveillance and attracting stromal cells that support tumor progression. METHODS: In this study, we associated in vitro mammosphere formation assays with bulk tumor microarray profiling and deconvolution algorithms to map CSC functionality and the microenvironmental landscape in a large cohort of 125 breast tumors. RESULTS: We found that the TME score was a significant factor associated with CSC functionality. CSC-rich tumors were characterized by an immune-suppressed TME, while tumors devoid of CSC potential exhibited high immune infiltration and activation of pathways involved in the immune response. Gene expression analysis revealed IFNG, CXCR5, CD40LG, TBX21 and IL2RG to be associated with the CSC phenotype and also displayed prognostic value for patients with breast cancer. CONCLUSION: These results suggest that the characterization of CSCs content and functionality in tumors can be used as an attractive strategy to fine-tune treatments and guide clinical decisions to improve patients therapy response.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Female , Transcription, Genetic , Gene Expression Profiling , Cell Line, Tumor , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Phenotype
3.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835038

ABSTRACT

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Integrin alpha6 , Tumor Suppressor Protein p53 , Animals , Integrin alpha6/metabolism , Integrin alpha6/genetics , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation , Stem Cells/metabolism , Gene Deletion , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
4.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829550

ABSTRACT

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Subject(s)
Neoplastic Stem Cells , Radiation Tolerance , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Radiation Tolerance/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Animals , Mice , Cell Line, Tumor , Glioma/pathology , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Apoptosis/genetics , Apoptosis/radiation effects , Ubiquitination , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Mice, Nude , Phenotype , Gene Expression Regulation, Neoplastic , Prognosis
5.
Oncol Rep ; 52(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38847277

ABSTRACT

Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem­like cells remains unexplored. The present study investigated the effect of UA on MDA­MB­231 and BT­549 cell­derived triple­negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis­related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit­8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription­quantitative PCR and western blotting. BALB/c­nude mice were subcutaneously injected with MDA­MB­231­derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch­like ECH­associated protein 1 and suppresses nuclear factor erythroid­related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple­negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.


Subject(s)
Cell Proliferation , Ferroptosis , NF-E2-Related Factor 2 , Neoplastic Stem Cells , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Xenograft Model Antitumor Assays , Ferroptosis/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triterpenes/pharmacology , Humans , NF-E2-Related Factor 2/metabolism , Animals , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Female , Cell Proliferation/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
6.
Cell Mol Life Sci ; 81(1): 255, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856747

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.


Subject(s)
Gene Expression Regulation, Neoplastic , NF-kappa B , Neoplastic Stem Cells , Promoter Regions, Genetic , Proto-Oncogene Proteins c-fos , Humans , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Cell Line, Tumor , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioma/pathology , Glioma/genetics , Glioma/metabolism , Animals , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Cell Proliferation/genetics , Mice , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
7.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853277

ABSTRACT

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Subject(s)
CD55 Antigens , Cell Nucleus , Chromatin , Cisplatin , Drug Resistance, Neoplasm , Histones , Neoplastic Stem Cells , Ovarian Neoplasms , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Mice , CD55 Antigens/metabolism , CD55 Antigens/genetics , Cell Line, Tumor , Histones/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Methylation , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Protein Transport
8.
World J Gastroenterol ; 30(20): 2624-2628, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855151

ABSTRACT

In this editorial we provide commentary on the article published by Wang et al, featured in the recent issue of the World Journal of Gastroenterology in 2024. We focus on the metadherin (MTDH), also known as astrocyte elevated gene-1 or lysine rich CEACAM1, and its effects on cancer stem cells (CSCs) and immunity in hepatocellular carcinoma (HCC). HCC is the most common primary liver cancer and one of the leading causes of cancer-related deaths worldwide. Most HCC cases develop in the context of liver cirrhosis. Among the pivotal mechanisms of carcinogenesis are gene mutations, dysregulation of diverse signaling pathways, epigenetic alterations, hepatitis B virus-induced hepatocarcinogenesis, chronic inflammation, impact of tumor microenvironment, oxidative stress. Over the years, extensive research has been conducted on the MTDH role in various tumor pathologies, such as lung, breast, ovarian, gastric, hepatocellular, colorectal, renal carcinoma, neuroblastoma, melanoma, and leukemias. Specifically, its involvement in tumor development processes including transformation, apoptosis evasion, angiogenesis, invasion, and metastasis via multiple signaling pathways. It has been demonstrated that knockdown or knockout of MTDH disrupt tumor development and metastasis. In addition, numerous reports have been carried out regarding the MTDH influence on HCC, demonstrating its role as a predictor of poor prognosis, aggressive tumor phenotypes prone to metastasis and recurrence, and exhibiting significant potential for therapy resistance. Finally, more studies finely investigated the influence of MTDH on CSCs. The CSCs are a small subpopulation of tumor cells that sharing traits with normal stem cells like self-renewal and differentiation abilities, alongside a high plasticity that alters their phenotype. Beyond their presumed role in tumor initiation, they can drive also disease relapse, metastasis, and resistance to chemo and radiotherapy.


Subject(s)
Carcinoma, Hepatocellular , Cell Adhesion Molecules , Liver Neoplasms , Membrane Proteins , Neoplastic Stem Cells , Phenotype , RNA-Binding Proteins , Tumor Microenvironment , Humans , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Adhesion Molecules/metabolism , Tumor Microenvironment/immunology , Signal Transduction , Prognosis
9.
BMC Med Genomics ; 17(1): 150, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822402

ABSTRACT

Long non-coding RNAs (lncRNAs) and cancer stem cells (CSCs) are crucial for the growth, migration, recurrence, and medication resistance of tumors. However, the impact of lncRNAs related to stemness on the outcome and tumor immune microenvironment (TIME) in clear cell renal cell carcinoma (ccRCC) is still unclear. In this study, we aimed to predict the outcome and TIME of ccRCC by constructing a stem related lncRNAs (SRlncRNAs) signature. We firstly downloaded ccRCC patients' clinical data and RNA sequencing data from UCSC and TCGA databases, and abtained the differentially expressed lncRNAs highly correlated with stem index in ccRCC through gene expression differential analysis and Pearson correlation analysis. Then, we selected suitable SRlncRNAs for constructing a prognostic signature of ccRCC patients by LASSO Cox regression. Further, we used nomogram and Kaplan Meier curves to evaluate the SRlncRNA signature for the prognose in ccRCC. At last, we used ssGSEA and GSVA to evaluate the correlation between the SRlncRNAs signature and TIME in ccRCC. Finally, We obtained a signtaure based on six SRlncRNAs, which are correlated with TIME and can effectively predict the ccRCC patients' prognosis. The SRlncRNAs signature may be a noval prognostic indicator in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Stem Cells , RNA, Long Noncoding , Tumor Microenvironment , Humans , RNA, Long Noncoding/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/immunology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Kaplan-Meier Estimate , Gene Expression Profiling
10.
Med Oncol ; 41(7): 167, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831079

ABSTRACT

Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/ß-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population. Both Wnt/ß-catenin and Hh/GLI-1 signaling cascades are known to be regulated by p53/p21-dependent mechanism. However, it is interesting to delineate whether p21 can induce apoptosis in a p53-independent manner. Therefore, utilizing various subtypes of oral CSCs (SCC9-PEMT p53+/+p21+/+, SCC9-PEMT p53-/-p21+/+, SCC9-PEMT p53+/+p21-/- and SCC9-PEMT p53-/-p21-/-), we have examined the distinct roles of p53 and p21 in Resveratrol nanoparticle (Res-Nano)-mediated apoptosis. It is interesting to see that, besides the p53/p21-mediated mechanism, Res-Nano exposure also significantly induced apoptosis in oral CSCs through a p53-independent activation of p21. Additionally, Res-Nano-induced p21-activation deregulated the ß-catenin-GLI-1 complex and consequently reduced the TCF/LEF and GLI-1 reporter activities. In agreement with in vitro data, similar experimental results were obtained in in vivo mice xenograft model.


Subject(s)
Apoptosis , Cyclin-Dependent Kinase Inhibitor p21 , Mouth Neoplasms , Nanoparticles , Neoplastic Stem Cells , Resveratrol , Tumor Suppressor Protein p53 , Zinc Finger Protein GLI1 , beta Catenin , Apoptosis/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Resveratrol/pharmacology , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , beta Catenin/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays
11.
Sci Adv ; 10(23): eadj7706, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848360

ABSTRACT

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioma , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/genetics , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Glioma/drug therapy , Temozolomide/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy
12.
J Transl Med ; 22(1): 537, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844969

ABSTRACT

Accumulating evidence indicated that HHEX participated in the initiation and development of several cancers, but the potential roles and mechanisms of HHEX in hepatocellular carcinoma (HCC) were largely unclear. Cancer stem cells (CSCs) are responsible for cancer progression owing to their stemness characteristics. We reported that HHEX was a novel CSCs target for HCC. We found that HHEX was overexpressed in HCC tissues and high expression of HHEX was associated with poor survival. Subsequently, we found that HHEX promoted HCC cell proliferation, migration, and invasion. Moreover, bioinformatics analysis and experiments verified that HHEX promoted stem cell-like properties in HCC. Mechanistically, ABI2 serving as a co-activator of transcriptional factor HHEX upregulated SLC17A9 to promote HCC cancer stem cell-like properties and tumorigenesis. Collectively, the HHEX-mediated ABI2/SLC17A9 axis contributes to HCC growth and metastasis by maintaining the CSC population, suggesting that HHEX serves as a promising therapeutic target for HCC treatment.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinogenesis/pathology , Animals , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , Male , Neoplasm Invasiveness , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Female , Neoplasm Metastasis
13.
Sci Rep ; 14(1): 11013, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745039

ABSTRACT

Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.


Subject(s)
Neoplastic Stem Cells , Spheroids, Cellular , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , SOXB1 Transcription Factors/metabolism , Image Processing, Computer-Assisted/methods , Microscopy, Confocal , Cell Line, Tumor
14.
Mol Biol Rep ; 51(1): 641, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727798

ABSTRACT

BACKGROUND: The interrelationship between cellular metabolism and the epithelial-to-mesenchymal transition (EMT) process has made it an interesting topic to investigate the adjuvant effect of therapeutic diets in the treatment of cancers. However, the findings are controversial. In this study, the effects of glucose limitation along and with the addition of beta-hydroxybutyrate (bHB) were examined on the expression of specific genes and proteins of EMT, Wnt, Hedgehog, and Hippo signaling pathways, and also on cellular behavior of gastric cancer stem-like (MKN-45) and non-stem-like (KATO III) cells. METHODS AND RESULTS: The expression levels of chosen genes and proteins studied in cancer cells gradually adopted a low-glucose condition of one-fourth, along and with the addition of bHB, and compared to the unconditioned control cells. The long-term switching of the metabolic fuels successfully altered the expression profiles and behaviors of both gastric cancer cells. However, the results for some changes were the opposite. Glucose limitation along and with the addition of bHB reduced the CD44+ population in MKN-45 cells. In KATO III cells, glucose restriction increased the CD44+ population. Glucose deprivation alleviated EMT-related signaling pathways in MKN-45 cells but stimulated EMT in KATO III cells. Interestingly, bHB enrichment reduced the beneficial effect of glucose starvation in MKN-45 cells, but also alleviated the adverse effects of glucose restriction in KATO III cells. CONCLUSIONS: The findings of this research clearly showed that some controversial results in clinical trials for ketogenic diet in cancer patients stemmed from the different signaling responses of various cells to the metabolic changes in a heterogeneous cancer mass.


Subject(s)
3-Hydroxybutyric Acid , Epithelial-Mesenchymal Transition , Glucose , Signal Transduction , Stomach Neoplasms , Epithelial-Mesenchymal Transition/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Cell Line, Tumor , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/metabolism , Glucose/metabolism , Ketosis/metabolism , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
15.
Front Immunol ; 15: 1354992, 2024.
Article in English | MEDLINE | ID: mdl-38736891

ABSTRACT

CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.


Subject(s)
Biomarkers, Tumor , Hyaluronan Receptors , Leukemia , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/immunology , Hyaluronan Receptors/metabolism , Leukemia/metabolism , Leukemia/therapy , Leukemia/immunology , Biomarkers, Tumor/metabolism , Animals , Signal Transduction , Molecular Targeted Therapy
16.
J Cell Mol Med ; 28(9): e18295, 2024 May.
Article in English | MEDLINE | ID: mdl-38722284

ABSTRACT

The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Female , Prognosis , Middle Aged , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Movement/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Clinical Relevance
17.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Article in English | MEDLINE | ID: mdl-38725852

ABSTRACT

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Subject(s)
Lipopolysaccharides , Neoplastic Stem Cells , SOX9 Transcription Factor , Humans , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Female , Lipopolysaccharides/pharmacology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Signal Transduction , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Gene Expression Regulation, Neoplastic
18.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724464

ABSTRACT

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Subject(s)
Glioblastoma , NK Cell Lectin-Like Receptor Subfamily K , Neoplastic Stem Cells , Oncolytic Virotherapy , Humans , Glioblastoma/therapy , Glioblastoma/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplastic Stem Cells/metabolism , Oncolytic Virotherapy/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor
19.
Nat Commun ; 15(1): 3905, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724522

ABSTRACT

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Subject(s)
Brain Neoplasms , Chromatin , Gene Expression Regulation, Neoplastic , Glioblastoma , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromatin/metabolism , Chromatin/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Genetic Heterogeneity , Promoter Regions, Genetic/genetics , Transcription, Genetic , Enhancer Elements, Genetic/genetics , Chromosomes, Human/genetics
20.
BMC Med Genomics ; 17(1): 121, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702698

ABSTRACT

BACKGROUND: Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the underlying mechanisms of SRGs in KIRP. METHODS: RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis (WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors. RESULTS: In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might be a potential inhibitor for KIRP. CONCLUSIONS: We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Stem Cells , Humans , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Male , Biomarkers, Tumor/genetics , Female , Gene Expression Profiling , Middle Aged , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...