Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.627
Filter
1.
Front Immunol ; 15: 1416914, 2024.
Article in English | MEDLINE | ID: mdl-38817605

ABSTRACT

Background: Angiogenesis, the process of forming new blood vessels from pre-existing ones, plays a crucial role in the development and advancement of cancer. Although blocking angiogenesis has shown success in treating different types of solid tumors, its relevance in prostate adenocarcinoma (PRAD) has not been thoroughly investigated. Method: This study utilized the WGCNA method to identify angiogenesis-related genes and assessed their diagnostic and prognostic value in patients with PRAD through cluster analysis. A diagnostic model was constructed using multiple machine learning techniques, while a prognostic model was developed employing the LASSO algorithm, underscoring the relevance of angiogenesis-related genes in PRAD. Further analysis identified MAP7D3 as the most significant prognostic gene among angiogenesis-related genes using multivariate Cox regression analysis and various machine learning algorithms. The study also investigated the correlation between MAP7D3 and immune infiltration as well as drug sensitivity in PRAD. Molecular docking analysis was conducted to assess the binding affinity of MAP7D3 to angiogenic drugs. Immunohistochemistry analysis of 60 PRAD tissue samples confirmed the expression and prognostic value of MAP7D3. Result: Overall, the study identified 10 key angiogenesis-related genes through WGCNA and demonstrated their potential prognostic and immune-related implications in PRAD patients. MAP7D3 is found to be closely associated with the prognosis of PRAD and its response to immunotherapy. Through molecular docking studies, it was revealed that MAP7D3 exhibits a high binding affinity to angiogenic drugs. Furthermore, experimental data confirmed the upregulation of MAP7D3 in PRAD, correlating with a poorer prognosis. Conclusion: Our study confirmed the important role of angiogenesis-related genes in PRAD and identified a new angiogenesis-related target MAP7D3.


Subject(s)
Adenocarcinoma , Immunotherapy , Machine Learning , Neovascularization, Pathologic , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prognosis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Immunotherapy/methods , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/genetics , Molecular Docking Simulation , Gene Expression Profiling , Angiogenesis
2.
FASEB J ; 38(10): e23682, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780524

ABSTRACT

Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.


Subject(s)
Cell Differentiation , Endothelial Cells , Glioma , Neoplastic Stem Cells , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Mice , Endothelial Cells/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Mice, Nude , Transcription, Genetic , Microfilament Proteins/metabolism , Microfilament Proteins/genetics
3.
Arch Endocrinol Metab ; 68: e230097, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38739522

ABSTRACT

Objective: This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods: Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results: XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion: LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.


Subject(s)
Diabetic Retinopathy , MicroRNAs , Neovascularization, Pathologic , RNA, Long Noncoding , Vascular Endothelial Growth Factor A , RNA, Long Noncoding/genetics , Diabetic Retinopathy/genetics , Diabetic Retinopathy/blood , Vascular Endothelial Growth Factor A/metabolism , Animals , Rats , Humans , Male , Neovascularization, Pathologic/genetics , Rats, Sprague-Dawley , Female , Cell Movement/genetics , Cell Proliferation/genetics , Middle Aged , Diabetes Mellitus, Experimental
4.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745265

ABSTRACT

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Subject(s)
Cell Proliferation , Disease Progression , Interferon Regulatory Factors , Methyltransferases , Up-Regulation , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/genetics , Mice , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism
5.
Oncoimmunology ; 13(1): 2356942, 2024.
Article in English | MEDLINE | ID: mdl-38778816

ABSTRACT

Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Brain Neoplasms , Cancer-Associated Fibroblasts , Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Mice , Animals , Cell Line, Tumor , Phenotype , Cell Lineage , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Single-Cell Analysis
6.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791597

ABSTRACT

Bladder cancer (BC) is a malignant tumor of the urinary system with high mortality and recurrence rates. Proteasome subunit type 4 (PSMB4) is highly expressed and has been identified as having oncogenic properties in a variety of cancer types. This study aimed to explore the effect of PSMB4 knockdown on the survival, migration, and angiogenesis of human bladder cancer cells with different degrees of malignancy. We analyzed the effects of PSMB4 knockdown in bladder cancer cells and endothelial cells in the tumor microenvironment. PSMB4 was highly expressed in patients with low- and high-grade urothelial carcinoma. Inhibition of PSMB4 reduced protein expression of focal adhesion kinase (FAK) and myosin light chain (MLC), leading to reduced migration. Furthermore, the suppression of PSMB4 decreased the levels of vascular endothelial factor B (VEGF-B), resulting in lower angiogenic abilities in human bladder cancer cells. PSMB4 inhibition affected the migratory ability of HUVECs and reduced VEGFR2 expression, consequently downregulating angiogenesis. In the metastatic animal model, PSMB4 knockdown reduced the relative volumes of lung tumors. Our findings suggest the role of PSMB4 as a potential target for therapeutic strategies against human bladder cancer.


Subject(s)
Cell Movement , Neovascularization, Pathologic , Proteasome Endopeptidase Complex , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Cell Movement/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Cell Line, Tumor , Animals , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Knockdown Techniques , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Male , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Female , Angiogenesis , Cysteine Endopeptidases
7.
BMC Cancer ; 24(1): 633, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783271

ABSTRACT

BACKGROUND: PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS: The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS: In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS: Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Lung Neoplasms , Neovascularization, Pathologic , Zinc Finger E-box-Binding Homeobox 1 , Humans , Epithelial-Mesenchymal Transition/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Male , Female , A549 Cells , Middle Aged
8.
Int Immunopharmacol ; 134: 112187, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733825

ABSTRACT

OBJECTIVE: Glioblastoma (GBM) has poor clinical prognosis due to limited treatment options. In addition, the current treatment regimens for GBM may only slightly prolong patient survival. The aim of this study was to assess the role of BMAL1 in the immune microenvironment and drug resistance of GBM. METHODS: GBM cell lines with stable BMAL1 knockdown or LDHA overexpression were constructed, and functionally characterized by the CCK8, EdU incorporation, and transwell assays. In vivo GBM model was established in C57BL/6J mice. Flow cytometry, ELISA, immunofluorescence, and RT-qPCR were performed to detect macrophage polarization. Lactate production, pathological changes, and the expression of glycolytic proteins were analyzed by HE staining, immunohistochemistry, biochemical assays, and Western blotting. RESULTS: BMAL1 silencing inhibited the malignant characteristics, lactate production, and expression of glycolytic proteins in GBM cells, and these changes were abrogated by overexpression of LDHA or exogenous lactate supplementation. Furthermore, BMAL1 knockdown induced M1 polarization of macrophages, and inhibited M2 polarization and angiogenesis in GBM cells in conditioned media. Overexpression of LDHA or presence of exogenous lactate inhibited BMAL1-induced M1 polarization and angiogenesis. Finally, BMAL1 silencing and bevacizumab synergistically inhibited glycolysis, angiogenesis and M2 polarization, and promoted M1 polarization in vivo, thereby suppressing GBM growth. CONCLUSION: BMAL1 silencing can sensitize GBM cells to bevacizumab by promoting M1/M2 polarization through the LDHA/lactate axis.


Subject(s)
ARNTL Transcription Factors , Bevacizumab , Glioblastoma , Lactic Acid , Mice, Inbred C57BL , Animals , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Cell Line, Tumor , Bevacizumab/therapeutic use , Bevacizumab/pharmacology , Mice , Lactic Acid/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Tumor Microenvironment/drug effects , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Glycolysis/drug effects , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/drug therapy , Gene Silencing , L-Lactate Dehydrogenase
9.
J Transl Med ; 22(1): 517, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816735

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs), which are a new type of single-stranded circular RNA, have significant involvement in progression of many diseases, including tumors. Currently, multiple circRNAs have been identified in hepatocellular carcinoma (HCC). Our study aims to investigate the function and mechanism of circDCAF8 in HCC. METHODS: The expression of circDCAF8 (hsa_circ_0014879) in HCC and para-carcinoma tissue samples was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The biological function of circDCAF8 in HCC was confirmed by experiments conducted both in vitro and in vivo. And the relationship between circDCAF8, miR-217 and NAP1L1 was predicted by database and verified using qRT-PCR, RNA-binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Exosomes isolated from HCC cells were utilized to assess the connection of exosomal circDCAF8 with HCC angiogenesis and regorafenib resistance. RESULTS: CircDCAF8 is upregulated in HCC tissues and cell lines, and is linked to an unfavourable prognosis for HCC patients. Functionally, circDCAF8 was proved to facilitate proliferation, migration, invasion and Epithelial-Mesenchymal Transformation (EMT) in HCC cells. Animal examinations also validated the tumor-promoting characteristics of circDCAF8 on HCC. Besides, exosomal circDCAF8 promoted angiogenesis in HUVECs. Mechanistically, circDCAF8 interacted with miR-217 and NAP1L1 was a downstream protein of miR-217. CircDCAF8 promoted NAP1L1 expression by sponging miR-217. In addition, exosomes may transfer circDCAF8 from regorafenib-resistant HCC cells to sensitive cells, where it would confer a resistant phenotype. CONCLUSION: CircDCAF8 facilitates HCC proliferation and metastasis via the miR-217/NAP1L1 axis. Meanwhile, circDCAF8 can promote angiogenesis and drive resistance to regorafenib, making it a viable therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Drug Resistance, Neoplasm , Exosomes , Liver Neoplasms , MicroRNAs , Neovascularization, Pathologic , Phenylurea Compounds , Pyridines , RNA, Circular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Exosomes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Drug Resistance, Neoplasm/genetics , Neovascularization, Pathologic/genetics , Animals , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Cell Line, Tumor , Pyridines/pharmacology , Mice, Nude , Gene Expression Regulation, Neoplastic , Male , Cell Proliferation/drug effects , Cell Proliferation/genetics , Mice , Mice, Inbred BALB C , Female , Base Sequence , Human Umbilical Vein Endothelial Cells/metabolism , Middle Aged , Angiogenesis
11.
Sci Rep ; 14(1): 10539, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719941

ABSTRACT

Abnormal angiogenesis leads to tumor progression and metastasis in colorectal cancer (CRC). This study aimed to elucidate the association between angiogenesis-related genes, including VEGF-A, ANGPT-1, and ANGPT-2 with both metastatic and microsatellite alterations at selected tetranucleotide repeats (EMAST) subtypes of CRC. We conducted a thorough assessment of the ANGPT-1, ANGPT-2, and VEGF-A gene expression utilizing publicly available RNA sequencing and microarray datasets. Then, the experimental validation was performed in 122 CRC patients, considering their disease metastasis and EMAST+/- profile by using reverse transcription polymerase chain reaction (RT-PCR). Subsequently, a competing endogenous RNA (ceRNA) network associated with these angiogenesis-related genes was constructed and analyzed. The expression level of VEGF-A and ANGPT-2 genes were significantly higher in tumor tissues as compared with normal adjacent tissues (P-value < 0.001). Nevertheless, ANGPT-1 had a significantly lower expression in tumor samples than in normal colon tissue (P-value < 0.01). We identified a significantly increased VEGF-A (P-value = 0.002) and decreased ANGPT-1 (P-value = 0.04) expression in EMAST+ colorectal tumors. Regarding metastasis, a significantly increased VEGF-A and ANGPT-2 expression (P-value = 0.001) and decreased ANGPT-1 expression (P-value < 0.05) were established in metastatic CRC patients. Remarkably, co-expression analysis also showed a strong correlation between ANGPT-2 and VEGF-A gene expressions. The ceRNA network was constructed by ANGPT-1, ANGPT-2, VEGF-A, and experimentally validated miRNAs (hsa-miR-190a-3p, hsa-miR-374c-5p, hsa-miR-452-5p, and hsa-miR-889-3p), lncRNAs (AFAP1-AS1, KCNQ1OT1 and MALAT1), and TFs (Sp1, E2F1, and STAT3). Network analysis revealed that colorectal cancer is amongst the 82 significant pathways. We demonstrated a significant differential expression of VEGF-A and ANGPT-1 in colorectal cancer patients exhibiting the EMAST+ phenotype. This finding provides novel insights into the molecular pathogenesis of colorectal cancer, specifically in EMAST subtypes. Yet, the generalization of in silico findings to EMAST+ colorectal cancer warrants future experimental investigations. In the end, this study proposes that the EMAST biomarker could serve as an additional perspective on CMS4 biology which is well-defined by activated angiogenesis and worse overall survival.


Subject(s)
Angiopoietin-1 , Angiopoietin-2 , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Male , Female , Middle Aged , Neoplasm Metastasis , Aged , Microsatellite Repeats/genetics , Gene Expression Profiling , Gene Regulatory Networks , Angiogenesis
12.
Mol Cancer ; 23(1): 94, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720298

ABSTRACT

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Subject(s)
Carrier Proteins , Fatty Acids , Membrane Proteins , Neoplasm Proteins , Ovarian Neoplasms , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Animals , Thyroid Hormones/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Warburg Effect, Oncologic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays , Cell Proliferation , Proteoglycans
13.
Front Biosci (Landmark Ed) ; 29(5): 177, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38812308

ABSTRACT

BACKGROUND: Gastric cancer (GC) is frequently diagnosed at advanced stages, when cancer cells have already metastasized. Therefore, patients with GC have a low survival rate and poor prognosis even after treatment. METHODS: We downloaded GC-related RNA sequencing (RNA-Seq) data, copy number variation (CNV) data, and clinical data for bioinformatics analysis to screen prognostic genes of GC. Single-sample gene set enrichment analysis and survival analyses were performed on the RNA-Seq data, and differential and correlation analyses were conducted on the CNV data to obtain CNV-driven differentially expressed genes (DEGs). Prognostic genes were identified through univariate Cox analyses of the CNV-driven DEGs, combined with the clinical data. F2R like thrombin or trypsin receptor 3 (F2RL3) was finally selected for verification after functional and survival analyses of the prognostic genes. RESULTS: F2RL3 expression was lower in paracancer tissue than in GC tissue, and lower in GES-1 gastric epithelial cells than in GC cells. The cell culture supernatants from F2RL3-knockdown GC cells were collected and used to culture human umbilical vein endothelial cells (HUVECs). It was observed that F2RL3 enhanced the activity, metastasis, invasion, and angiogenesis of GC cells; promoted the epithelial-mesenchymal transition (EMT) of GC cells; and impacted the Ras-associated protein 1 (Rap1)/mitogen-activated protein kinase (MAPK) pathway. To further explore the involvement of the Rap1/MAPK pathway in GC development, a pathway activator was added to GC cells with knockdown of F2RL3 expression. This pathway activator not only enhanced the activity, invasion, and migration of GC cells but also promoted the EMT and blood vessel formation. CONCLUSIONS: F2RL3 regulates the angiogenesis and EMT of GC cells through the Rap1/MAPK pathway, thus influencing the onset and progression of GC.


Subject(s)
Epithelial-Mesenchymal Transition , Neovascularization, Pathologic , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , Epithelial-Mesenchymal Transition/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Cell Line, Tumor , Prognosis , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Shelterin Complex/metabolism , Male , Female , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , DNA Copy Number Variations , Cell Movement/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Angiogenesis
14.
Front Biosci (Landmark Ed) ; 29(5): 189, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38812317

ABSTRACT

BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it. METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p. RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor. CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , ErbB Receptors , Exosomes , Human Umbilical Vein Endothelial Cells , Lung Neoplasms , MicroRNAs , Neovascularization, Pathologic , Papillomavirus E7 Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , Exosomes/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/blood supply , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Animals , Cell Line, Tumor , Mice , Mice, Nude , Human papillomavirus 16/genetics , Angiogenesis
15.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 263-269, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814204

ABSTRACT

The study aimed to explore the pathogenesis of secondary frozen shoulder and its influence on synovium tissue and angiogenesis by constructing a rat secondary frozen shoulder model along with transforming growth factor. 40 healthy male rats aged 8 weeks were divided into Sham group (n=10, no modeling treatment), Control group (n=10, modeling treatment), Low group (n=10, modeling treatment, and 10 mL/d transforming growth factor), and High group (n=10, modeling treatment, and 20 mL/d transforming growth factor). Hematoxylin and Eosin (HE) method was used for histological detection, and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunohistochemical staining method were adopted to detect the expression of Matrix metalloproteinase-14 (MMP-14), mitogen-activated protein kinase (p38MAPK), and Vascular endothelial growth factor (VEGF). Compared with Sham group, the range of abduction and external rotation of rat glenohumeral joint in Control group, Low group, and High group was significantly reduced, and High group had the smallest range. Compared with the Sham group, the synovium in the Control group, the Low group, and the High group had obvious hyperplasia, and the blood vessels were significantly increased. Immunohistochemical staining and RT-PCR results showed that compared with Sham group, MMP-14, p38 MAPK, and VEGF in Control group, Low group, and High group all increased significantly, among which High group increased most. The secondary frozen shoulder is mainly manifested as synovial hyperplasia and increased blood vessels, which are related to the induction of MMP-14, p38 MAPK, and VEGF by transforming growth factor, which reveals the pathogenesis of secondary frozen shoulder to a certain extent, and lays a foundation for subsequent clinical treatment of secondary frozen shoulder.


Subject(s)
Bursitis , Disease Models, Animal , Shoulder Joint , Synovial Membrane , Vascular Endothelial Growth Factor A , p38 Mitogen-Activated Protein Kinases , Animals , Male , Synovial Membrane/metabolism , Synovial Membrane/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Shoulder Joint/pathology , Bursitis/metabolism , Bursitis/pathology , Bursitis/genetics , Rats , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Rats, Sprague-Dawley , Gene Expression Regulation , Angiogenesis
16.
Aging (Albany NY) ; 16(9): 8086-8109, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728245

ABSTRACT

BACKGROUND: Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS: A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS: The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS: In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.


Subject(s)
Biomarkers, Tumor , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Prognosis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Cell Proliferation/genetics , Neuropilin-1/genetics , Neuropilin-1/metabolism , Cell Movement/genetics , Transcriptome , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
17.
Mol Cell Biol ; 44(5): 178-193, 2024.
Article in English | MEDLINE | ID: mdl-38767243

ABSTRACT

Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Lysophospholipids , Neovascularization, Pathologic , Osteosarcoma , Phosphotransferases (Alcohol Group Acceptor) , STAT3 Transcription Factor , Signal Transduction , Sphingosine , Humans , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Lysophospholipids/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Transcriptional Activation/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Cell Movement/genetics , Male , Animals , Female , Angiogenesis
18.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791252

ABSTRACT

Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM.


Subject(s)
Aquaporin 1 , Breast Neoplasms , Leptin , Neovascularization, Pathologic , STAT3 Transcription Factor , Humans , Leptin/metabolism , Leptin/pharmacology , Leptin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Aquaporin 1/metabolism , Aquaporin 1/genetics , Female , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cadherins/metabolism , Cadherins/genetics , MCF-7 Cells , Laminin/metabolism , Antigens, CD
20.
Sci Data ; 11(1): 467, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719891

ABSTRACT

Angiogenesis is extensively involved in embryonic development and requires complex regulation networks, whose defects can cause a variety of vascular abnormalities. Cis-regulatory elements control gene expression at all developmental stages, but they have not been studied or profiled in angiogenesis yet. In this study, we exploited public DNase-seq and RNA-seq datasets from a VEGFA-stimulated in vitro angiogenic model, and carried out an integrated analysis of the transcriptome and chromatin accessibility across the entire process. Totally, we generated a bank of 47,125 angiogenic cis-regulatory elements with promoter (marker by H3K4me3) and/or enhancer (marker by H3K27ac) activities. Motif enrichment analysis revealed that these angiogenic cis-regulatory elements interacted preferentially with ETS family TFs. With this tool, we performed an association study using our WES data of TAPVC and identified rs199530718 as a cis-regulatory SNP associated with disease risk. Altogether, this study generated a genome-wide bank of angiogenic cis-regulatory elements and illustrated its utility in identifying novel cis-regulatory SNPs for TAPVC, expanding new horizons of angiogenesis as well as vascular abnormality genetics.


Subject(s)
Polymorphism, Single Nucleotide , Humans , Regulatory Sequences, Nucleic Acid , Vascular Endothelial Growth Factor A/genetics , Genome-Wide Association Study , Neovascularization, Pathologic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...