Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371486

ABSTRACT

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Subject(s)
Nepovirus/drug effects , Plant Diseases/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/pharmacology , Animals , Antibodies, Viral/immunology , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/drug effects , Cryoelectron Microscopy , Epitopes/chemistry , Models, Molecular , Nematoda/virology , Nepovirus/ultrastructure , Plant Diseases/virology , Plant Leaves/virology , Plant Viruses/immunology , Plant Viruses/physiology , Protein Conformation , Vitis
2.
Bull Exp Biol Med ; 162(1): 79-81, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27878716

ABSTRACT

A producing strain of an anti-tumor and antiviral enzyme L-lysine-α-oxidase from Trichoderma was cultured using a technological device of G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (Pushchino). L-lysine-α-oxidase activity in the obtained metabolite concentrate was 5.4 U/ml. We studied the effects of the concentrate of active L-lysine-α-oxidase producer on the highly infectious Tobacco ringspot virus and revealed anti-viral activity of it when enzyme concentration was at least 1.0 U/ml.


Subject(s)
Amino Acid Oxidoreductases/pharmacology , Antiviral Agents/pharmacology , Fungal Proteins/pharmacology , Nepovirus/drug effects , RNA, Viral/antagonists & inhibitors , Trichoderma/enzymology , Amino Acid Oxidoreductases/biosynthesis , Amino Acid Oxidoreductases/isolation & purification , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Balsaminaceae/virology , Culture Media/chemistry , Fermentation , Fungal Proteins/biosynthesis , Fungal Proteins/isolation & purification , Nepovirus/genetics , Nepovirus/growth & development , RNA, Viral/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Trichoderma/chemistry , Trichoderma/growth & development
3.
PLoS Pathog ; 7(10): e1002327, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22046131

ABSTRACT

Cell-to-cell movement of plant viruses occurs via plasmodesmata (PD), organelles that evolved to facilitate intercellular communications. Viral movement proteins (MP) modify PD to allow passage of the virus particles or nucleoproteins. This passage occurs via several distinct mechanisms one of which is MP-dependent formation of the tubules that traverse PD and provide a conduit for virion translocation. The MP of tubule-forming viruses including Grapevine fanleaf virus (GFLV) recruit the plant PD receptors called Plasmodesmata Located Proteins (PDLP) to mediate tubule assembly and virus movement. Here we show that PDLP1 is transported to PD through a specific route within the secretory pathway in a myosin-dependent manner. This transport relies primarily on the class XI myosins XI-K and XI-2. Inactivation of these myosins using dominant negative inhibition results in mislocalization of PDLP and MP and suppression of GFLV movement. We also found that the proper targeting of specific markers of the Golgi apparatus, the plasma membrane, PD, lipid raft subdomains within the plasma membrane, and the tonoplast was not affected by myosin XI-K inhibition. However, the normal tonoplast dynamics required myosin XI-K activity. These results reveal a new pathway of the myosin-dependent protein trafficking to PD that is hijacked by GFLV to promote tubule-guided transport of this virus between plant cells.


Subject(s)
Myosins/metabolism , Nepovirus/physiology , Plant Viral Movement Proteins/physiology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Golgi Apparatus/drug effects , Golgi Apparatus/physiology , Golgi Apparatus/virology , Host-Pathogen Interactions , Membrane Microdomains/drug effects , Membrane Microdomains/virology , Microtubules/drug effects , Microtubules/physiology , Microtubules/virology , Myosins/antagonists & inhibitors , Nepovirus/drug effects , Nepovirus/pathogenicity , Protein Transport/drug effects , Protein Transport/physiology , Thiazolidines/pharmacology , Viral Nonstructural Proteins
4.
J Plant Physiol ; 168(15): 1866-9, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21696845

ABSTRACT

Soluble silicon (Si) provides protection to plants against a variety of abiotic and biotic stress. However, the effects of Si on viral infections are largely unknown. To investigate the role of Si in viral infections, hydroponic studies were conducted in Nicotiana tabacum with two pathogens: Tobacco ringspot virus (TRSV) and Tobacco mosaic virus (TMV). Plants grown in elevated Si showed a delay in TRSV systemic symptom formation and a reduction in symptomatic leaf area, compared to the non-supplemented controls. TRSV-infected plants showed significantly higher levels of foliar Si compared to mock-inoculated plants. However, the Si effect appeared to be virus-specific, since the element did not alter TMV symptoms nor did infection by this virus alter foliar Si levels. Hence, increased foliar Si levels appear to correlate with Si-modulated protection against viral infection. This is all the more intriguing since N. tabacum is classified as a low Si accumulator.


Subject(s)
Nepovirus/drug effects , Nicotiana/virology , Plant Diseases/virology , Silicon/pharmacology , Tobacco Mosaic Virus/drug effects , Hydroponics , Nepovirus/physiology , Plant Leaves/virology , Nicotiana/drug effects , Nicotiana/genetics , Nicotiana/physiology , Tobacco Mosaic Virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...