Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.792
Filter
1.
Food Res Int ; 188: 114513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823886

ABSTRACT

This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.


Subject(s)
Antioxidants , Digestion , Animals , Hydrolysis , Antioxidants/metabolism , Antioxidants/analysis , Bone and Bones/metabolism , Swine , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Food Handling/methods , Hot Temperature , Amino Acids/metabolism , Amino Acids/analysis , Meat Products/analysis , Hypoglycemic Agents/pharmacology , Antihypertensive Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Hydrolases/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Endopeptidases
2.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 155-160, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814221

ABSTRACT

In order to explore a new mode for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL), 31 cases of AITL and 28 cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) were used as the study subjects. Identifying T follicular helper (TFH) cells with CD4, CD10, Bcl-6, and PD-1, identifying proliferative B cells with CD20 and EZH2, identifying proliferative follicular dendritic cells (FDCs) with CD21 and CD23, and analyzing the value of TFH/B/FDC proliferation and immunolocalization in the diagnosis of AITL. (1) Outside the inherent lymphoid follicles, simultaneous proliferation of TFH/B/FDC (a new diagnostic mode) were observed in AITL [83.87%; 26/31], with their immunolocalizations in the same site [83.87%; 26/31], while this phenomenon was not observed in 28 cases of PTCL-NOS (P<0.05). (2) The sensitivity and specificity of using this new mode to diagnose AITL were both high (83.87%, 100%), which was superior to CD2 (100%, 0%), CD3 (100%, 0%), CD4 (100%, 32.14%), CD5 (100%, 25%), CD10 (61.9%, 100%), Bcl-6 (42.86%, 100%), PD-1 (83.87%, 96.43%), and its Youden Index (0.84) was the highest. The areas under the curve (AUC) of CD10, Bcl-6, PD-1, and new mode to diagnosis AITL were 0.81, 0.71, 0.90, and 0.92, respectively, while the new mode had the highest AUC. The simultaneous proliferation of TFH/B/FDC cells outside the inherent lymphoid follicles can be used to assist in the diagnosis of AITL, and the simultaneous spatiotemporal proliferation of TFH/B/FDC cells is a specific immunomorphology of AITL.


Subject(s)
Proto-Oncogene Proteins c-bcl-6 , Humans , Female , Male , Middle Aged , Aged , Proto-Oncogene Proteins c-bcl-6/metabolism , Neprilysin/metabolism , Immunoblastic Lymphadenopathy/diagnosis , Immunoblastic Lymphadenopathy/pathology , Dendritic Cells, Follicular/pathology , Dendritic Cells, Follicular/metabolism , Programmed Cell Death 1 Receptor/metabolism , Adult , Lymphoma, T-Cell/diagnosis , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Cell Proliferation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Receptors, Complement 3d/metabolism , Receptors, Complement 3d/analysis , Antigens, CD20/metabolism , Antigens, CD20/analysis , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/pathology , CD4 Antigens/metabolism , Sensitivity and Specificity , Aged, 80 and over , Immunohistochemistry/methods , ROC Curve
3.
J Int Med Res ; 52(5): 3000605241254330, 2024 May.
Article in English | MEDLINE | ID: mdl-38779976

ABSTRACT

Heart failure is a complex clinical syndrome that is one of the causes of high mortality worldwide. Additionally, healthcare systems around the world are also being burdened by the aging population and subsequently, increasing estimates of patients with heart failure. As a result, it is crucial to determine novel ways to reduce the healthcare costs, rate of hospitalizations and mortality. In this regard, clinical biomarkers play a very important role in stratifying risk, determining prognosis or diagnosis and monitoring patient responses to therapy. This narrative review discusses the wide spectrum of clinical biomarkers, novel inventions of new techniques, their advantages and limitations as well as applications. As heart failure rates increase, cost-effective diagnostic tools such as B-type natriuretic peptide and N-terminal pro b-type natriuretic peptide are crucial, with emerging markers like neprilysin and cardiac imaging showing promise, though larger studies are needed to confirm their effectiveness compared with traditional markers.


Subject(s)
Biomarkers , Heart Failure , Natriuretic Peptide, Brain , Humans , Heart Failure/diagnosis , Heart Failure/blood , Biomarkers/blood , Prognosis , Natriuretic Peptide, Brain/blood , Neprilysin/metabolism , Peptide Fragments/blood
4.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38752331

ABSTRACT

C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.


Subject(s)
Biphenyl Compounds , Bone Development , Mice, Inbred C57BL , Natriuretic Peptide, C-Type , Neprilysin , Animals , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/genetics , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/metabolism , Bone Development/drug effects , Mice , Biphenyl Compounds/pharmacology , Mice, Knockout , Aminobutyrates/pharmacology , Signal Transduction/drug effects , Male , Valsartan/pharmacology , Growth Plate/drug effects , Growth Plate/metabolism , Drug Combinations , Tetrazoles/pharmacology
5.
Arch Biochem Biophys ; 756: 110019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688397

ABSTRACT

Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid ß protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.


Subject(s)
Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Neprilysin , Neprilysin/antagonists & inhibitors , Neprilysin/chemistry , Neprilysin/metabolism , Humans , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pharmacophore
6.
Neurosci Lett ; 825: 137705, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38428725

ABSTRACT

INTRODUCTION: The antibody drugs targeting ß-amyloid in Alzheimer's disease pose risks of inflammation and vascular damage. It is known that neprilysin, an endogenous enzyme responsible for ß-amyloid degradation, is reduced in areas with ß-amyloid deposition. Supplementation of neprilysin could potentially contribute to Alzheimer's disease treatment. When considering the use of adipose tissue-derived stem cells (ADSCs) for Alzheimer's disease therapy, it is crucial to ensure that Alzheimer's disease patient-derived ADSCs maintain neprilysin activity. If so, the use of autologous ADSCs may lead to a treatment with minimal risks of rejection or infection. Therefore, we investigated the neprilysin activity in Alzheimer's disease patient-derived adipose tissue-derived stem cells to assess their potential in Alzheimer's disease treatment. METHODS: Five Alzheimer's disease patients (MSC1-5) and two Chronic Obstructive Pulmonary Disease (COPD) patients (MSC6-7) were enrolled. ADSCs were cultured for 6 days with varying seeding densities. On the 3rd day, the medium was replaced, and on the 6th day, ADSCs were harvested. Cells were stained for PE-Cy7 Mouse IgG1 κ Isotype control and PE-Cy Mouse Anti-Human CD10, and CD10 expression was assessed by flow cytometry. Ethical approval and informed consent were obtained. RESULTS: Neprilysin activity, crucial for ß-amyloid degradation, was assessed in ADSCs. Positivity rates for CD10 expression in ADSCs from Alzheimer's patients were consistently high: 99.6%, 99.5%, 99.9%, 99.3%, 99.8%, and 100.0%. Control ADSCs from COPD patients (MSC6-7) exhibited comparable positivity rates. Flow cytometry plots for all seven cases are presented in Figures 1-7. DISCUSSION: This study confirms the presence and maintenance of neprilysin activity in ADSCs from Alzheimer's disease patients. The high positivity rates for CD10 expression in these cells suggest that neprilysin, a key enzyme in ß-amyloid degradation, remains active. The implications are significant, as ADSCs offer immune-compatible and low infection risk advantages. The study underscores the potential of autologous ADSCs as a therapeutic approach in Alzheimer's disease. Their ability to naturally harbor neprilysin activity, coupled with their safety profile, makes them a promising candidate for further exploration. While acknowledging the need for larger, more diverse cohorts and long-term studies, these findings contribute to the growing body of evidence supporting the development of stem cell-based interventions in Alzheimer's disease treatment.


Subject(s)
Alzheimer Disease , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , Alzheimer Disease/metabolism , Neprilysin/metabolism , Amyloid beta-Peptides/metabolism , Stem Cells/metabolism
7.
Inflammation ; 47(2): 696-717, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38319541

ABSTRACT

The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1ß and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1ß, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1ß and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Colitis , Dextran Sulfate , Disease Models, Animal , Inflammasomes , Macrophages , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Valsartan , Animals , Mice , Aminobutyrates/pharmacology , Aminobutyrates/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Biphenyl Compounds/pharmacology , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/toxicity , Drug Combinations , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Valsartan/pharmacology , Male
8.
Cell Mol Life Sci ; 81(1): 42, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217709

ABSTRACT

Neprilysin (NEP) is an emerging biomarker for various diseases including heart failure (HF). However, major inter-assay inconsistency in the reported concentrations of circulating NEP and uncertainty with respect to its correlations with type and severity of disease are in part attributed to poorly characterized antibodies supplied in commercial ELISA kits. Validated antibodies with well-defined binding footprints are critical for understanding the biological and clinical context of NEP immunoassay data. To achieve this, we applied in silico epitope prediction and rational peptide selection to generate monoclonal antibodies (mAbs) against spatially distant sites on NEP. One of the selected epitopes contained published N-linked glycosylation sites at N285 and N294. The best antibody pair, mAb 17E11 and 31E1 (glycosylation-sensitive), were characterized by surface plasmon resonance, isotyping, epitope mapping, and western blotting. A validated two-site sandwich NEP ELISA with a limit of detection of 2.15 pg/ml and working range of 13.1-8000 pg/ml was developed with these mAbs. Western analysis using a validated commercial polyclonal antibody (PE pAb) and our mAbs revealed that non-HF and HF plasma NEP circulates as a heterogenous mix of moieties that possibly reflect proteolytic processing, post-translational modifications and homo-dimerization. Both our mAbs detected a ~ 33 kDa NEP fragment which was not apparent with PE pAb, as well as a common ~ 57-60 kDa moiety. These antibodies exhibit different affinities for the various NEP targets. Immunoassay results are dependent on NEP epitopes variably detected by the antibody pairs used, explaining the current discordant NEP measurements derived from different ELISA kits.


Subject(s)
Antibodies, Monoclonal , Heart Failure , Humans , Epitopes , Neprilysin/metabolism , Enzyme-Linked Immunosorbent Assay , Immunoassay/methods
9.
J Cell Mol Med ; 28(2): e17993, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847125

ABSTRACT

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease with multifaceted neuropathological disorders. AD is characterized by intracellular accumulation of phosphorylated tau proteins and extracellular deposition of amyloid beta (Aß). Various protease enzymes, including neprilysin (NEP), are concerned with the degradation and clearance of Aß. Indeed, a defective neuronal clearance pathway due to the dysfunction of degradation enzymes might be a possible mechanism for the accumulation of Aß and subsequent progression of AD neuropathology. NEP is one of the most imperative metalloproteinase enzymes involved in the clearance of Aß. This review aimed to highlight the possible role of NEP inhibitors in AD. The combination of sacubitril and valsartan which is called angiotensin receptor blocker and NEP inhibitor (ARNI) may produce beneficial and deleterious effects on AD neuropathology. NEP inhibitors might increase the risk of AD by the inhibition of Aß clearance, and increase brain bradykinin (BK) and natriuretic peptides (NPs), which augment the pathogenesis of AD. These verdicts come from animal model studies, though they may not be applied to humans. However, clinical studies revealed promising safety findings regarding the use of ARNI. Moreover, NEP inhibition increases various neuroprotective peptides involved in inflammation, glucose homeostasis and nerve conduction. Also, NEP inhibitors may inhibit dipeptidyl peptidase 4 (DPP4) expression, ameliorating insulin and glucagon-like peptide 1 (GLP-1) levels. These findings proposed that NEP inhibitors may have a protective effect against AD development by increasing GLP-1, neuropeptide Y (NPY) and substance P, and deleterious effects by increasing brain BK. Preclinical and clinical studies are recommended in this regard.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neprilysin/metabolism , Glucagon-Like Peptide 1
10.
Int Immunopharmacol ; 127: 111384, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38141405

ABSTRACT

OBJECTIVE AND DESIGN: ADAM10 and Neprilysin, proteases, play critical role in inflammatory disease, however their role in cancer immune response is not clear. We here evaluated changes in immune response using an experimental model for breast cancer. MATERIAL AND METHOD: Highly metastatic breast cancer cells (4T1-derived) were injected orthotopically (mammary-pad of Balb-c mice) to induce tumors. Changes in enzyme level and activity as well as alterations in inflammatory cytokine release in the presence or absence of ADAM10 and NEP activity was determined using specific inhibitors and recombinant proteins. Cytokine response was evaluated using mix leucocyte cultures obtained from control and tumor-bearing mice. ANOVA with Dunnett's posttest was used for statistical analysis. RESULTS: ADAM10 and NEP expression was decreased markedly in lymph nodes and spleens of tumor-bearing mice. ADAM10 activity was reduced together with apparent alterations of ADAM10 processing. ADAM10 and NEP activity decreased TNF-α, IL-6 and IFN-É£ secretion. Suppression of these inflammatory cytokines were more prominent in cultures obtained from control mice demonstrating counteracting factors that are exist in tumor-bearing mice. CONCLUSION: Loss of ADAM10 and NEP activity in immune cells during breast cancer metastasis might be one of the main factors involved in induction of chronic inflammation by tumors.


Subject(s)
Neoplasms , Neprilysin , Animals , Mice , ADAM10 Protein , Cell Line, Tumor , Cytokines , Mice, Inbred BALB C , Neprilysin/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Neuron ; 111(22): 3619-3633.e8, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37689059

ABSTRACT

A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-ß (Aß) protein in the brain. Physical exercise has been shown to reduce Aß burden in various AD mouse models, but the underlying mechanisms have not been elucidated. Irisin, an exercise-induced hormone, is the secreted form of fibronectin type-III-domain-containing 5 (FNDC5). Here, using a three-dimensional (3D) cell culture model of AD, we show that irisin significantly reduces Aß pathology by increasing astrocytic release of the Aß-degrading enzyme neprilysin (NEP). This is mediated by downregulation of ERK-STAT3 signaling. Finally, we show that integrin αV/ß5 acts as the irisin receptor on astrocytes required for irisin-induced release of astrocytic NEP, leading to clearance of Aß. Our findings reveal for the first time a cellular and molecular mechanism by which exercise-induced irisin attenuates Aß pathology, suggesting a new target pathway for therapies aimed at the prevention and treatment of AD.


Subject(s)
Alzheimer Disease , Neprilysin , Mice , Animals , Neprilysin/genetics , Neprilysin/metabolism , Fibronectins/metabolism , Down-Regulation , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Brain/metabolism
12.
Cells ; 12(14)2023 07 11.
Article in English | MEDLINE | ID: mdl-37508489

ABSTRACT

The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).


Subject(s)
Cartilage, Articular , Extracellular Vesicles , MicroRNAs , Osteoarthritis , Synovitis , Animals , Humans , Synovitis/metabolism , Osteoarthritis/metabolism , Extracellular Vesicles/metabolism , Knee Joint/metabolism , MicroRNAs/metabolism , Cartilage, Articular/metabolism , Neprilysin/metabolism , Fibrosis , Homeostasis , Stromal Cells/metabolism
13.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298510

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. In AD patients, amyloid-ß (Aß) peptide-mediated degeneration of the cholinergic system utilizing acetylcholine (ACh) for memory acquisition is observed. Since AD therapy using acetylcholinesterase (AChE) inhibitors are only palliative for memory deficits without reversing disease progress, there is a need for effective therapies, and cell-based therapeutic approaches should fulfil this requirement. We established F3.ChAT human neural stem cells (NSCs) encoding the choline acetyltransferase (ChAT) gene, an ACh-synthesizing enzyme, HMO6.NEP human microglial cells encoding the neprilysin (NEP) gene, an Aß-degrading enzyme, and HMO6.SRA cells encoding the scavenger receptor A (SRA) gene, an Aß-uptaking receptor. For the efficacy evaluation of the cells, first, we established an appropriate animal model based on Aß accumulation and cognitive dysfunction. Among various AD models, intracerebroventricular (ICV) injection of ethylcholine mustard azirinium ion (AF64A) induced the most severe Aß accumulation and memory dysfunction. Established NSCs and HMO6 cells were transplanted ICV to mice showing memory loss induced by AF64A challenge, and brain Aß accumulation, ACh concentration and cognitive function were analyzed. All the transplanted F3.ChAT, HMO6.NEP and HMO6.SRA cells were found to survive up to 4 weeks in the mouse brain and expressed their functional genes. Combinational treatment with the NSCs (F3.ChAT) and microglial cells encoding each functional gene (HMO6.NEP or HMO6.SRA) synergistically restored the learning and memory function of AF64A-challenged mice by eliminating Aß deposits and recovering ACh level. The cells also attenuated inflammatory astrocytic (glial fibrillary acidic protein) response by reducing Aß accumulation. Taken together, it is expected that NSCs and microglial cells over-expressing ChAT, NEP or SRA genes could be strategies for replacement cell therapy of AD.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Humans , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Microglia/metabolism , Acetylcholinesterase/metabolism , Neural Stem Cells/metabolism , Amyloid beta-Peptides/metabolism , Memory Disorders/metabolism , Neprilysin/metabolism , Acetylcholine/metabolism , Disease Models, Animal
14.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373354

ABSTRACT

Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma (NHL) characterized by a hallmark translocation of t (11; 14). CD10 negativity has been used to differentiate MCL from other NHL types; however, recently, there has been an increase in the number of reported cases of CD10-positive MCL. This warrants further investigation into this rarer immunophenotype and its clinical significance. BCL6, which is a master transcription factor for the regulation of cell proliferation and key oncogene in B cell lymphomagenesis, has been reported to have co-expression with CD10 in MCL. The clinical significance of this aberrant antigen expression remains unknown. We conducted a systematic review by searching four databases and selected five retrospective analyses and five case series. Two survival analyses were conducted to determine if BCL6 positivity conferred a survival difference: 1. BCL6+ vs. BCL6- MCL. 2. BCL6+/CD10+ vs. BCL6-/CD10+ MCL. Correlation analysis was conducted to determine if BCL6 positivity correlated with the Ki67 proliferation index (PI). Overall survival (OS) rates were performed by the Kaplan-Meier method and log-rank test. Our analyses revealed that BCL6+ MCL had significantly shorter overall survival (median OS: 14 months vs. 43 months; p = 0.01), BCL6+/CD10+ MCL had an inferior outcome vs. BCL6+/CD10- MCL (median OS: 20 months vs. 55 months p = 0.1828), BCL6+ MCL had significantly higher percentages of Ki67% (Ki67% difference: 24.29; p = 0.0094), and BCL6 positivity had a positive correlation with CD10+ status with an odds ratio 5.11 (2.49, 10.46; p = 0.0000286). Our analysis showed that BCL6 expression is correlated with CD10 positivity in MCL, and BCL6 expression demonstrated an inferior overall survival. The higher Ki67 PI in BCL6+ MCL compared to BCL6- MCL further supports the idea that the BCL6+ immunophenotype may have prognostic value in MCL. MCL management should consider incorporating prognostic scoring systems adjusted for BCL6 expression. Targeted therapies against BCL6 may offer potential therapeutic options for managing MCL with aberrant immunophenotypes.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/genetics , Neprilysin/genetics , Neprilysin/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Retrospective Studies , Prognosis , Ki-67 Antigen
15.
J Diabetes Investig ; 14(9): 1038-1040, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37357546

ABSTRACT

The possible mechanism of increased urinary C-peptide due to neprilysin inhibitors is investigated. Neprilysin inhibition blocks degradation of natriuretic peptides, and elicits a natriuretic and antihypertensive effect. Neprilysin inhibition might similarly block degradation of C-peptides in the kidney and thus increase the urinary C-peptide level.


Subject(s)
Diabetes Mellitus , Heart Failure , Humans , Antihypertensive Agents/therapeutic use , Valsartan/therapeutic use , Neprilysin/metabolism , Heart Failure/drug therapy , Tetrazoles , C-Peptide , Drug Combinations , Angiotensin Receptor Antagonists/therapeutic use , Diabetes Mellitus/drug therapy
16.
Endocrinology ; 164(5)2023 03 13.
Article in English | MEDLINE | ID: mdl-36964914

ABSTRACT

The peptidase neprilysin modulates glucose homeostasis by cleaving and inactivating insulinotropic peptides, including some produced in the intestine such as glucagon-like peptide-1 (GLP-1). Under diabetic conditions, systemic or islet-selective inhibition of neprilysin enhances beta-cell function through GLP-1 receptor (GLP-1R) signaling. While neprilysin is expressed in intestine, its local contribution to modulation of beta-cell function remains unknown. We sought to determine whether acute selective pharmacological inhibition of intestinal neprilysin enhanced glucose-stimulated insulin secretion under physiological conditions, and whether this effect was mediated through GLP-1R. Lean chow-fed Glp1r+/+ and Glp1r-/- mice received a single oral low dose of the neprilysin inhibitor thiorphan or vehicle. To confirm selective intestinal neprilysin inhibition, neprilysin activity in plasma and intestine (ileum and colon) was assessed 40 minutes after thiorphan or vehicle administration. In a separate cohort of mice, an oral glucose tolerance test was performed 30 minutes after thiorphan or vehicle administration to assess glucose-stimulated insulin secretion. Systemic active GLP-1 levels were measured in plasma collected 10 minutes after glucose administration. In both Glp1r+/+ and Glp1r-/- mice, thiorphan inhibited neprilysin activity in ileum and colon without altering plasma neprilysin activity or active GLP-1 levels. Further, thiorphan significantly increased insulin secretion in Glp1r+/+ mice, whereas it did not change insulin secretion in Glp1r-/- mice. In conclusion, under physiological conditions, acute pharmacological inhibition of intestinal neprilysin increases glucose-stimulated insulin secretion in a GLP-1R-dependent manner. Since intestinal neprilysin modulates beta-cell function, strategies to inhibit its activity specifically in the intestine may improve beta-cell dysfunction in type 2 diabetes.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Insulin Secretion , Neprilysin , Animals , Male , Mice , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose , Insulin/metabolism , Intestines , Mice, Inbred C57BL , Neprilysin/genetics , Neprilysin/metabolism , Thiorphan/pharmacology
17.
Viral Immunol ; 36(3): 176-185, 2023 04.
Article in English | MEDLINE | ID: mdl-36811498

ABSTRACT

Every year, dengue is responsible for 400 million infections worldwide. Inflammation is related to the development of severe forms of dengue. Neutrophils are a heterogeneous cell population with a key role in the immune response. During viral infection, neutrophils are mainly recruited to the infection site; however, their excessive activation is linked to deleterious results. During dengue infection, neutrophils are involved in the pathogenesis through neutrophils extracellular traps production, tumor necrosis factor-alpha, and interleukin-8 secretion. However, other molecules regulate the neutrophil role during viral infection. TREM-1 is expressed on neutrophils and its activation is related to increased production of inflammatory mediators. CD10 is expressed on mature neutrophils and has been associated with the regulation of neutrophil migration and immunosuppression. However, the role of both molecules during viral infection is limited, particularly during dengue infection. Here, we report for the first time that DENV-2 can significantly increase TREM-1 and CD10 expression as well as sTREM-1 production in cultured human neutrophils. Furthermore, we observed that treatment with granulocyte-macrophage colony stimulating factor, a molecule mostly produced in severe cases of dengue, is capable of inducing the overexpression of TREM-1 and CD10 on human neutrophils. These results suggest the participation of neutrophil CD10 and TREM-1 in the pathogenesis of dengue infection.


Subject(s)
Dengue Virus , Dengue , Humans , Neutrophils/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neprilysin/metabolism
18.
J Neurochem ; 164(6): 725-763, 2023 03.
Article in English | MEDLINE | ID: mdl-36633092

ABSTRACT

Cerebral clearance of amyloid ß-protein (Aß) is decreased in early-onset and late-onset Alzheimer's disease (AD). Aß is cleared from the brain by enzymatic degradation and by transport out of the brain. More than 20 Aß-degrading enzymes have been described. Increasing the degradation of Aß offers an opportunity to decrease brain Aß levels in AD patients. This review discusses the direct and indirect approaches which have been used in experimental systems to alter the expression and/or activity of Aß-degrading enzymes. Also discussed are the enzymes' regulatory mechanisms, the conformations of Aß they degrade, where in the scheme of Aß production, extracellular release, cellular uptake, and intracellular degradation they exert their activities, and changes in their expression and/or activity in AD and its animal models. Most of the experimental approaches require further confirmation. Based upon each enzyme's effects on Aß (some of the enzymes also possess ß-secretase activity and may therefore promote Aß production), its direction of change in AD and/or its animal models, and the Aß conformation(s) it degrades, investigating the effects of increasing the expression of neprilysin in AD patients would be of particular interest. Increasing the expression of insulin-degrading enzyme, endothelin-converting enzyme-1, endothelin-converting enzyme-2, tissue plasminogen activator, angiotensin-converting enzyme, and presequence peptidase would also be of interest. Increasing matrix metalloproteinase-2, matrix metalloproteinase-9, cathepsin-B, and cathepsin-D expression would be problematic because of possible damage by the metalloproteinases to the blood brain barrier and the cathepsins' ß-secretase activity. Many interventions which increase the enzymatic degradation of Aß have been shown to decrease AD-type pathology in experimental models. If a safe approach can be found to increase the expression or activity of selected Aß-degrading enzymes in human subjects, then the possibility that this approach could slow the AD progression should be examined in clinical trials.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Amyloid beta-Peptides/metabolism , Endothelin-Converting Enzymes , Alzheimer Disease/metabolism , Tissue Plasminogen Activator , Matrix Metalloproteinase 2 , Amyloid Precursor Protein Secretases , Neprilysin/metabolism , Cathepsins
19.
In Vivo ; 37(1): 163-172, 2023.
Article in English | MEDLINE | ID: mdl-36593043

ABSTRACT

BACKGROUND/AIM: Alzheimer's disease is the most common type of neurodegenerative disorder in elderly individuals worldwide. Increasing evidence suggests that periodontal diseases are involved in the pathogenesis of Alzheimer's disease, and an association between periodontitis and amyloid-ß deposition in elderly individuals has been demonstrated. The aim of the present study was to examine the effects of systemic administration of Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS) on neprilysin expression in the hippocampus of adult and senescence-accelerated mice. MATERIALS AND METHODS: PG-LPS diluted in saline was intraperitoneally administered to male C57BL/6J and senescence-accelerated mouse prone 8 (SAMP8) mice at a dose of 5 mg/kg every 3 days for 3 months. Both C57BL/6J and SAMP8 mice administered saline without PG-LPS comprised the control group. The mRNA expression levels of neprilysin and interleukin (IL)-10 were evaluated using the quantitative reverse transcriptase-polymerase chain reaction. The protein levels of neprilysin were assessed using western blotting. Sections of the brain tissues were immunohistochemically stained. RESULTS: The serum IL-10 concentration significantly increased in both mouse strains after stimulation with PG-LPS. Neprilysin expression at both mRNA and protein levels was significantly lower in the SAMP8 PG-LPS group than those in the SAMP8 control group; however, they did not differ in PG-LPS-treated or non-treated C57BL/6J mice. Additionally, the immunofluorescence intensity of neprilysin in the CA3 region of the hippocampus in PG-LPS-treated SAMP8 mice was significantly lower than that in control SAMP8 mice. CONCLUSION: Porphyromonas gingivalis may reduce the expression of neprilysin in elderly individuals and thus increase amyloid-ß deposition.


Subject(s)
Alzheimer Disease , Male , Mice , Animals , Alzheimer Disease/metabolism , Lipopolysaccharides/pharmacology , Porphyromonas gingivalis/metabolism , Neprilysin/genetics , Neprilysin/metabolism , Mice, Inbred C57BL , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , RNA, Messenger/metabolism
20.
Biol Chem ; 404(5): 513-520, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36653344

ABSTRACT

Neprilysins are highly conserved ectoenzymes that hydrolyze and thus inactivate signaling peptides in the extracellular space. Herein, we focus on Neprilysin 4 from Drosophila melanogaster and evaluate the existing knowledge on the physiological relevance of the peptidase. Particular attention is paid to the role of the neprilysin in regulating feeding behavior and the expression of insulin-like peptides in the central nervous system. In addition, we assess the function of the peptidase in controlling the activity of the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase in myocytes, as well as the underlying molecular mechanism in detail.


Subject(s)
Drosophila melanogaster , Neprilysin , Animals , Calcium , Drosophila melanogaster/metabolism , Neprilysin/chemistry , Neprilysin/metabolism , Peptide Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL
...