Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.279
Filter
1.
Ideggyogy Sz ; 77(5-6): 161-166, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38829252

ABSTRACT

Background and purpose:

The aim of this study is to comprehensively determine the types of affected fibers in Parkinson’s disease (PD) patients by employing nerve conduction studies (NCS), sympathetic skin response (SSR) examinations, and current perception threshold (CPT) testing and to analyze the correlation between levodopa use and nerve involvement.

. Methods:

This retrospective study included 36 clinically diagnosed PD patients who were recruited between January 2018 and April 2019. All patients underwent NCS, SSR testing, and CPT sensory examinations. Additionally, the PD patients were assessed for disease staging using the Hoehn and Yahr (H-Y) scale. 

. Results:

Fifteen patients were included in the tremor-dominant subtype, ten patients in the rigid-dominant subtype, and eleven patients in the mixed subtype. Eleven patients were using levodopa, while twenty-five patients had never used any anti-Parkinson’s medication. Ten patients (28%) showed abnormal sympathetic skin responses (SSR). The CPT examination revealed sensory abnormalities in twenty-four patients (67%), with eighteen patients (75%) experiencing sensory hypersensitivity and six patients (25%) experiencing sensory hypoesthesia. Twelve patients (33%) had normal CPT results. Among the patients with abnormal CPT findings, seven cases (29%) involved large myelinated fiber damage, twenty-two cases (92%) involved small myelinated fiber damage, and nineteen cases (79%) involved unmyelinated fiber damage. The rate of sensory abnormalities was 64% (7/11) in the levodopa group and 68% (17/25) in the non-levodopa group, with no statistically significant difference between the two groups. 

. Conclusion:

The incidence of abnormal CPT findings in PD patients was higher than that of abnormal SSR responses, suggesting that nerve fiber damage primarily affects small fiber nerves (SFN).

.


Subject(s)
Levodopa , Neural Conduction , Parkinson Disease , Humans , Levodopa/administration & dosage , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Parkinson Disease/complications , Middle Aged , Female , Aged , Retrospective Studies , Male , Neural Conduction/drug effects , Nerve Fibers/pathology , Nerve Fibers/drug effects , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/adverse effects , Peripheral Nerves/pathology
2.
Invest Ophthalmol Vis Sci ; 65(5): 5, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696189

ABSTRACT

Purpose: Neuroinflammation plays a significant role in the pathology of Alzheimer's disease (AD). Mouse models of AD and postmortem biopsy of patients with AD reveal retinal glial activation comparable to central nervous system immunoreactivity. We hypothesized that the surface area of putative retinal gliosis observed in vivo using en face optical coherence tomography (OCT) imaging will be larger in patients with preclinical AD versus controls. Methods: The Spectralis II instrument was used to acquire macular centered 20 × 20 and 30 × 25-degrees spectral domain OCT images of 76 participants (132 eyes). A cohort of 22 patients with preclinical AD (40 eyes, mean age = 69 years, range = 60-80 years) and 20 control participants (32 eyes, mean age = 66 years, range = 58-82 years, P = 0.11) were included for the assessment of difference in surface area of putative retinal gliosis and retinal nerve fiber layer (RNFL) thickness. The surface area of putative retinal gliosis and RNFL thickness for the nine sectors of the Early Treatment Diabetic Retinopathy Study (ETDRS) map were compared between groups using generalized linear mixed models. Results: The surface area of putative retinal gliosis was significantly greater in the preclinical AD group (0.97 ± 0.55 mm2) compared to controls (0.68 ± 0.40 mm2); F(1,70) = 4.41, P = 0.039; Cohen's d = 0.61. There was no significant difference between groups for RNFL thickness in the 9 ETDRS sectors, P > 0.05. Conclusions: Our analysis shows greater putative retinal gliosis in preclinical AD compared to controls. This demonstrates putative retinal gliosis as a potential biomarker for AD-related neuroinflammation.


Subject(s)
Alzheimer Disease , Gliosis , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Gliosis/pathology , Gliosis/diagnosis , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Tomography, Optical Coherence/methods , Aged , Female , Male , Aged, 80 and over , Middle Aged , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Retinal Diseases/diagnosis , Retinal Diseases/etiology , Retina/pathology , Retina/diagnostic imaging
3.
PLoS One ; 19(5): e0300621, 2024.
Article in English | MEDLINE | ID: mdl-38696393

ABSTRACT

The prone position reduces mortality in severe cases of COVID-19 with acute respiratory distress syndrome. However, visual loss and changes to the peripapillary retinal nerve fiber layer (p-RNFL) and the macular ganglion cell layer and inner plexiform layer (m-GCIPL) have occurred in patients undergoing surgery in the prone position. Moreover, COVID-19-related eye problems have been reported. This study compared the p-RNFL and m-GCIPL thicknesses of COVID-19 patients who were placed in the prone position with patients who were not. This prospective longitudinal and case-control study investigated 15 COVID-19 patients placed in the prone position (the "Prone Group"), 23 COVID-19 patients not in the prone position (the "Non-Prone Group"), and 23 healthy, non-COVID individuals without ocular disease or systemic conditions (the "Control Group"). The p-RNFL and m-GCIPL thicknesses of the COVID-19 patients were measured at 1, 3, and 6 months and compared within and between groups. The result showed that the Prone and Non-Prone Groups had no significant differences in their p-RNFL thicknesses at the 3 follow-ups. However, the m-GCIPL analysis revealed significant differences in the inferior sector of the Non-Prone Group between months 1 and 3 (mean difference, 0.74 µm; P = 0.009). The p-RNFL analysis showed a significantly greater thickness at 6 months for the superior sector of the Non-Prone Group (131.61 ± 12.08 µm) than for the Prone Group (118.87 ± 18.21 µm; P = 0.039). The m-GCIPL analysis revealed that the inferior sector was significantly thinner in the Non-Prone Group than in the Control Group (at 1 month 80.57 ± 4.60 versus 83.87 ± 5.43 µm; P = 0.031 and at 6 months 80.48 ± 3.96 versus 83.87 ± 5.43 µm; P = 0.044). In conclusion, the prone position in COVID-19 patients can lead to early loss of p-RNFL thickness due to rising intraocular pressure, which is independent of the timing of prone positioning. Consequently, there is no increase in COVID-19 patients' morbidity burden.


Subject(s)
COVID-19 , Nerve Fibers , Retinal Ganglion Cells , Humans , COVID-19/pathology , COVID-19/complications , Male , Prone Position , Female , Middle Aged , Retinal Ganglion Cells/pathology , Case-Control Studies , Nerve Fibers/pathology , Prospective Studies , SARS-CoV-2 , Adult , Aged , Tomography, Optical Coherence , Retina/pathology , Longitudinal Studies
4.
Am J Ophthalmol ; 259: 7-14, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38708401

ABSTRACT

Purpose: To evaluate the diagnostic accuracy of retinal nerve fiber layer thickness (RNFLT) by spectral-domain optical coherence tomography (OCT) in primary open-angle glaucoma (POAG) in eyes of African (AD) and European descent (ED). Design: Comparative diagnostic accuracy analysis by race. Participants: 379 healthy eyes (125 AD and 254 ED) and 442 glaucomatous eyes (226 AD and 216 ED) from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Methods: Spectralis (Heidelberg Engineering GmbH) and Cirrus (Carl Zeiss Meditec) OCT scans were taken within one year from each other. Main Outcome Measures: Diagnostic accuracy of RNFLT measurements. Results: Diagnostic accuracy for Spectralis-RNFLT was significantly lower in eyes of AD compared to those of ED (area under the receiver operating curve [AUROC]: 0.85 and 0.91, respectively, P=0.04). Results for Cirrus-RNFLT were similar but did not reach statistical significance (AUROC: 0.86 and 0.90 in AD and ED, respectively, P =0.33). Adjustments for age, central corneal thickness, axial length, disc area, visual field mean deviation, and intraocular pressure yielded similar results. Conclusions: OCT-RNFLT has lower diagnostic accuracy in eyes of AD compared to those of ED. This finding was generally robust across two OCT instruments and remained after adjustment for many potential confounders. Further studies are needed to explore the potential sources of this difference.


Subject(s)
Glaucoma, Open-Angle , Intraocular Pressure , Nerve Fibers , Optic Disk , ROC Curve , Retinal Ganglion Cells , Tomography, Optical Coherence , Visual Fields , White People , Humans , Glaucoma, Open-Angle/ethnology , Glaucoma, Open-Angle/diagnosis , Tomography, Optical Coherence/methods , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology , Female , Male , Middle Aged , Intraocular Pressure/physiology , Visual Fields/physiology , White People/ethnology , Reproducibility of Results , Aged , Optic Disk/pathology , Optic Disk/diagnostic imaging , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/ethnology , Black or African American/ethnology , Area Under Curve , Sensitivity and Specificity
5.
Invest Ophthalmol Vis Sci ; 65(5): 16, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717425

ABSTRACT

Purpose: Research on Alzheimer's disease (AD) and precursor states demonstrates a thinner retinal nerve fiber layer (NFL) compared to age-similar controls. Because AD and age-related macular degeneration (AMD) both impact older adults and share risk factors, we asked if retinal layer thicknesses, including NFL, are associated with cognition in AMD. Methods: Adults ≥ 70 years with normal retinal aging, early AMD, or intermediate AMD per Age-Related Eye Disease Study (AREDS) nine-step grading of color fundus photography were enrolled in a cross-sectional study. Optical coherence tomography (OCT) volumes underwent 11-line segmentation and adjustments by a trained operator. Evaluated thicknesses reflect the vertical organization of retinal neurons and two vascular watersheds: NFL, ganglion cell layer-inner plexiform layer complex (GCL-IPL), inner retina, outer retina (including retinal pigment epithelium-Bruch's membrane), and total retina. Thicknesses were area weighted to achieve mean thickness across the 6-mm-diameter Early Treatment of Diabetic Retinopathy Study (ETDRS) grid. Cognitive status was assessed by the National Institutes of Health Toolbox cognitive battery for fluid and crystallized cognition. Correlations estimated associations between cognition and thicknesses, adjusting for age. Results: Based on 63 subjects (21 per group), thinning of the outer retina was significantly correlated with lower cognition scores (P < 0.05). No other retinal thickness variables were associated with cognition. Conclusions: Only the outer retina (photoreceptors, supporting glia, retinal pigment epithelium, Bruch's membrane) is associated with cognition in aging to intermediate AMD; NFL was not associated with cognition, contrary to AD-associated condition reports. Early and intermediate AMD constitute a retinal disease whose earliest, primary impact is in the outer retina. Our findings hint at a unique impact on the brain from the outer retina in persons with AMD.


Subject(s)
Aging , Cognition , Macular Degeneration , Retina , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Male , Aged , Female , Cross-Sectional Studies , Aging/physiology , Aged, 80 and over , Macular Degeneration/physiopathology , Cognition/physiology , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology
6.
Transl Vis Sci Technol ; 13(5): 20, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780955

ABSTRACT

Purpose: We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness. Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (n = 45) and assessed how measurements compared with healthy controls (n = 46). We also developed automatic rejection thresholds and tested the software for robustness to camera type, image format, and resolution. Results: We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (ß = -9.81; standard error [SE] = 3.16; P < 0.05), in the temporal inferior zone (ß = -29.78; SE = 8.32; P < 0.01), with the nasal/temporal ratio (ß = 0.88; SE = 0.34; P < 0.05), and in the whole disc (ß = -8.22; SE = 2.92; P < 0.05). Furthermore, pallor was significantly higher in the patient group. Last, we demonstrate the analysis to be robust to camera type, image format, and resolution. Conclusions: We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness. Translational Relevance: We think our method will be useful for the identification, monitoring, and progression of diseases characterized by disc pallor and optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.


Subject(s)
Deep Learning , Nerve Fibers , Optic Disk , Photography , Software , Tomography, Optical Coherence , Humans , Optic Disk/diagnostic imaging , Optic Disk/pathology , Tomography, Optical Coherence/methods , Male , Female , Middle Aged , Nerve Fibers/pathology , Photography/methods , Adult , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/cytology , Aged , Optic Nerve Diseases/diagnostic imaging , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/pathology , Fundus Oculi
7.
Sci Rep ; 14(1): 12069, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802443

ABSTRACT

Optical coherence tomography (OCT) displays the retinal nerve fiber layer (RNFL) or macular ganglion cell and inner plexiform layer (GCIPL) thickness below 1st percentile in red color. This finding generally indicates severe inner-retinal structural changes and suggests poor visual function. Nevertheless, some individuals show preserved visual function despite these circumstances. This study aimed to identify the correlation between best-corrected visual acuity (BCVA) and inner-retinal thickness based on OCT parameters in various optic neuropathy patients with extremely low RNFL/GCIPL thickness, and determine the limitation of OCT for predicting visual function in these patients. 131 patients were included in the study. The mean BCVA in logMAR was 0.55 ± 0.70 with a broad range from - 0.18 to 3.00. Among the OCT parameters, temporal GCIPL (r = - 0.412) and average GCIPL (r = - 0.366) exhibited the higher correlations with BCVA. Etiological comparisons of optic neuropathies revealed significantly lower BCVA in LHON (all p < 0.05). Idiopathic optic neuritis (ON) and MOGAD exhibited better and narrower BCVA distributions compared to the other optic neuropathies. OCT had limited utility in reflecting BCVA, notwithstanding significant inner-retinal thinning after optic nerve injuries. Caution is needed in interpreting OCT findings, especially as they relate to the etiology of optic neuropathy.


Subject(s)
Optic Nerve Diseases , Tomography, Optical Coherence , Visual Acuity , Humans , Male , Female , Tomography, Optical Coherence/methods , Adult , Middle Aged , Optic Nerve Diseases/physiopathology , Visual Acuity/physiology , Retina/diagnostic imaging , Retina/physiopathology , Retina/pathology , Young Adult , Adolescent , Retinal Ganglion Cells/pathology , Aged , Nerve Fibers/pathology , Child
8.
J Plast Reconstr Aesthet Surg ; 93: 193-199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703710

ABSTRACT

BACKGROUND: Many surgical strategies aim to treat the symptomatic neuroma of the superficial branch of the radial nerve (SBRN). It is still difficult to treat despite many attempts to reveal a reason for surgical treatment failure. The lateral antebrachial cutaneous nerve (LACN) is known to overlap and communicate with SBRN. Our study aims to determine the frequency of spreading of LACN fibers into SBRN branches through a microscopic dissection to predict where and how often LACN fibers may be involved in SBRN neuroma. METHODS: Eighty-seven cadaveric forearms were thoroughly dissected. The path of LACN fibers through the SBRN branching was ascertained using microscopic dissection. Distances between the interstyloid line and entry of LACN fibers into the SBRN and emerging and bifurcation points of the SBRN were measured. RESULTS: The LACN fibers joined the SBRN at a mean distance of 1.7 ± 2.5 cm proximal to the interstyloid line. The SBRN contained fibers from the LACN in 62% of cases. Most commonly, there were LACN fibers within the SBRN's third branch (59%), but they were also observed within the first branch, the second branch, and their common trunk (21%, 9.2%, and 22%, respectively). The lowest rate of the LACN fibers was found within the SBRN trunk (6.9%). CONCLUSION: The SBRN contains LACN fibers in almost 2/3 of the cases, therefore, the denervation of both nerves might be required to treat the neuroma. However, the method must be considered based on the particular clinical situation.


Subject(s)
Cadaver , Neuroma , Radial Nerve , Humans , Neuroma/surgery , Radial Nerve/anatomy & histology , Radial Nerve/surgery , Female , Male , Aged , Middle Aged , Forearm/innervation , Forearm/surgery , Aged, 80 and over , Nerve Fibers , Peripheral Nervous System Neoplasms/surgery , Dissection/methods
9.
Transl Vis Sci Technol ; 13(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38739084

ABSTRACT

Purpose: This study aimed to evaluate the ocular characteristics associated with spontaneously high myopia in adult nonhuman primates (NHPs). Methods: A total of 537 eyes of 277 macaques with an average age of 18.53 ± 3.01 years (range = 5-26 years), raised in a controlled environment, were included. We measured ocular parameters, including spherical equivalent (SE), axial length (AXL), and intraocular pressure. The 45-degree fundus images centered on the macula and the disc assessed the fundus tessellation and parapapillary atrophy (PPA). Additionally, optical coherence tomography (OCT) was used to measure the thickness of the retinal nerve fiber layer (RNFL). Results: The mean SE was -1.58 ± 3.71 diopters (D). The mean AXL was 18.76 ± 0.86 mm. The prevalence rate of high myopia was 17.7%. As myopia aggravated, the AXL increased (r = -0.498, P < 0.001). Compared with non-high myopia, highly myopic eyes had a greater AXL (P < 0.001), less RNFL thickness (P = 0.004), a higher incidence of PPA (P < 0.001), and elevated grades of fundus tessellation (P < 0.001). The binary logistic regression was performed, which showed PPA (odds ratio [OR] = 4.924, 95% confidence interval [CI] = 2.375-10.207, P < 0.001) and higher grades of fundus tessellation (OR = 1.865, 95% CI = 1.474-2.361, P < 0.001) were independent risk characteristics for high myopia. Conclusions: In NHPs, a higher grade of fundus tessellation and PPA were significant biomarkers of high myopia. Translational Relevance: The study demonstrates adult NHPs raised in conditioned rooms have a similar prevalence and highly consistent fundus changes with human beings, which strengthens the foundation for utilizing macaques as an animal model in high myopic studies.


Subject(s)
Fundus Oculi , Tomography, Optical Coherence , Animals , Male , Female , Disease Models, Animal , Optic Disk/pathology , Optic Disk/diagnostic imaging , Optic Atrophy/pathology , Optic Atrophy/epidemiology , Intraocular Pressure/physiology , Myopia, Degenerative/pathology , Myopia, Degenerative/epidemiology , Nerve Fibers/pathology , Axial Length, Eye/pathology , Retinal Ganglion Cells/pathology , Myopia/pathology , Myopia/epidemiology , Myopia/veterinary
10.
Transl Vis Sci Technol ; 13(5): 9, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38743409

ABSTRACT

Purpose: To assess the diagnostic performance and structure-function association of retinal retardance (RR), a customized metric measured by a prototype polarization-sensitive optical coherence tomography (PS-OCT), across various stages of glaucoma. Methods: This cross-sectional pilot study analyzed 170 eyes from 49 healthy individuals and 68 patients with glaucoma. The patients underwent PS-OCT imaging and conventional spectral-domain optical coherence tomography (SD-OCT), as well as visual field (VF) tests. Parameters including RR and retinal nerve fiber layer thickness (RNFLT) were extracted from identical circumpapillary regions of the fundus. Glaucomatous eyes were categorized into early, moderate, or severe stages based on VF mean deviation (MD). The diagnostic performance of RR and RNFLT in discriminating glaucoma from controls was assessed using receiver operating characteristic (ROC) curves. Correlations among VF-MD, RR, and RNFLT were evaluated and compared within different groups of disease severity. Results: The diagnostic performance of both RR and RNFLT was comparable for glaucoma detection (RR AUC = 0.98, RNFLT AUC = 0.97; P = 0.553). RR showed better structure-function association with VF-MD than RNFLT (RR VF-MD = 0.68, RNFLT VF-MD = 0.58; z = 1.99; P = 0.047) in glaucoma cases, especially in severe glaucoma, where the correlation between VF-MD and RR (r = 0.73) was significantly stronger than with RNFLT (r = 0.43, z = 1.96, P = 0.050). In eyes with early and moderate glaucoma, the structure-function association was similar when using RNFLT and RR. Conclusions: RR and RNFLT have similar performance in glaucoma diagnosis. However, in patients with glaucoma especially severe glaucoma, RR showed a stronger correlation with VF test results. Further research is needed to validate RR as an indicator for severe glaucoma evaluation and to explore the benefits of using PS-OCT in clinical practice. Translational Relevance: We demonstrated that PS-OCT has the potential to evaluate the status of RNFL structural damage in eyes with severe glaucoma, which is currently challenging in clinics.


Subject(s)
Glaucoma , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Visual Fields , Humans , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Male , Female , Middle Aged , Nerve Fibers/pathology , Pilot Projects , Visual Fields/physiology , Glaucoma/physiopathology , Glaucoma/diagnostic imaging , Aged , Retinal Ganglion Cells/pathology , ROC Curve , Visual Field Tests/methods , Adult , Intraocular Pressure/physiology
11.
Int Ophthalmol ; 44(1): 226, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758396

ABSTRACT

PURPOSE: Glaucoma and multiple sclerosis (MS) can cause optic disc pathology and, in this way, affect optical coherence tomography (OCT) data. In this context, the objective of this study is to investigate the changes in the mean, quadrant, and sector data measured by OCT in glaucoma and MS patients. METHODS: The sample of this prospective cohort study consisted of 42 MS patients (84 eyes), 34 Primary open-angle glaucomas patients (67 eyes), and 24 healthy control subjects (48 eyes). The MS group was divided into two groups according to the presence of a history of optic neuritis. Accordingly, those with a history of optic neuritis were included in the MS ON group, and those without a history of optic neuritis were included in the MS NON group. The differences between these groups in the mean, quadrant, and sector data related to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) were evaluated. RESULTS: Superior nasal (SN), superior temporal (ST), inferior nasal (IN), and superior quadrant (SUP) values were significantly lower in the glaucoma group than in the MS group (p < 0.05). The mean superior GCC (GCC SUP) value was significantly lower in the MS ON group than in the glaucoma group (p < 0.05). On the other hand, SN, ST, inferior temporal (IT), IN, average RNFL (AVE RNFL), semi-average superior RNFL (SUP AVE RNFL), semi-average inferior RNFL (INF AVE RNFL), SUP, and inferior quadrant RNFL (INF) values were significantly lower in the glaucoma group than in the MS NON group (p < 0.05). CONCLUSION: RNFL and GCC parameters get thinner in MS and glaucoma patients. While the inferior and superior RNFL quadrants are more frequently affected in glaucoma patients, the affected quadrants vary according to the presence of a history of optic neuritis in MS patients. It is noteworthy that the GCC superior quadrant was thin in MS ON patients. The findings of this study indicate that OCT data may be valuable in the differential diagnosis of glaucoma and MS.


Subject(s)
Intraocular Pressure , Multiple Sclerosis , Nerve Fibers , Optic Disk , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Female , Male , Multiple Sclerosis/diagnosis , Multiple Sclerosis/complications , Prospective Studies , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Optic Disk/pathology , Optic Disk/diagnostic imaging , Middle Aged , Adult , Intraocular Pressure/physiology , Glaucoma, Open-Angle/diagnosis , Visual Fields/physiology , Optic Neuritis/diagnosis
12.
Biomed Environ Sci ; 37(2): 196-203, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38582982

ABSTRACT

Objective: Cognitive impairment (CI) in older individuals has a high morbidity rate worldwide, with poor diagnostic methods and susceptible population identification. This study aimed to investigate the relationship between different retinal metrics and CI in a particular population, emphasizing polyvascular status. Methods: We collected information from the Asymptomatic Polyvascular Abnormalities Community Study on retinal vessel calibers, retinal nerve fiber layer (RNFL) thickness, and cognitive function of 3,785 participants, aged 40 years or older. Logistic regression was used to analyze the relationship between retinal metrics and cognitive function. Subgroups stratified by different vascular statuses were also analyzed. Results: RNFL thickness was significantly thinner in the CI group (odds ratio: 0.973, 95% confidence interval: 0.953-0.994). In the subgroup analysis, the difference still existed in the non-intracranial arterial stenosis, non-extracranial carotid arterial stenosis, and peripheral arterial disease subgroups ( P < 0.05). Conclusion: A thin RNFL is associated with CI, especially in people with non-large vessel stenosis. The underlying small vessel change in RNFL and CI should be investigated in the future.


Subject(s)
Carotid Stenosis , Cognitive Dysfunction , Humans , Aged , Constriction, Pathologic , Tomography, Optical Coherence , Retinal Vessels , Nerve Fibers
13.
BMC Ophthalmol ; 24(1): 159, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600474

ABSTRACT

BACKGROUND: Multifocal pupillographic objective perimetry (mfPOP) is a novel method for assessing functional change in diseases like glaucoma. Previous research has suggested that, in contrast to the pretectally-mediated melanopsin response of intrinsically photosensitive retinal ganglion cells, mfPOP responses to transient onset stimuli involve the extrastriate cortex, and thus the main visual pathway. We therefore investigate the correlation between peripapillary retinal nerve fibre layer (pRNFL) thickness and glaucomatous visual field changes detected using mfPOP. Parallel analyses are undertaken using white on white standard automated perimetry (SAP) for comparison. METHODS: Twenty-five glaucoma patients and 24 normal subjects were tested using SAP, 3 mfPOP variants, and optical coherence tomography (OCT). Arcuate clusters of the SAP and mfPOP deviations were weighted according to their contribution to published arcuate divisions of the retinal nerve fibre layer. Structure-function correlation coefficients (r) were computed between pRNFL clock-hour sector thickness measurements, and the local visual field sensitivities from both SAP and mfPOP. RESULTS: The strongest correlation was observed in the superior-superotemporal disc sector in patients with worst eye SAP MD < -12 dB: r = 0.93 for the mfPOP LumBal test (p < 0.001). Correlations across all disc-sectors were strongest in these same patients in both SAP and mfPOP: SAP r = 0.54, mfPOP LumBal r = 0.55 (p < 0.001). In patients with SAP MD ≥ -6 dB in both eyes, SAP correlations across all sectors were higher than mfPOP; mfPOP correlations however, were higher than SAP in more advanced disease, and in normal subjects. CONCLUSIONS: For both methods the largest correlations with pRNFL thickness corresponded to the inferior nasal field of more severely damaged eyes. Head-to-head comparison of mfPOP and SAP showed similar structure-function relationships. This agrees with our recent reports that mfPOP primarily stimulates the cortical drive to the pupils.


Subject(s)
Glaucoma , Visual Field Tests , Humans , Visual Field Tests/methods , Retina , Tomography, Optical Coherence/methods , Nerve Fibers , Structure-Activity Relationship
14.
Transl Vis Sci Technol ; 13(4): 10, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38578635

ABSTRACT

Purpose: This study aims to determine whether OCT-derived rates of change in minimum rim width (MRW) are associated with and can potentially predict corresponding alterations in retinal nerve fiber layer thickness (RNFLT) in people with glaucoma. Methods: The rates of change between six-monthly visits were taken from 568 eyes of 278 participants in the P3 Study. Structural equation models (SEM) assessed whether one parameter was predicted by the concurrent or previous rate of the other parameter, after adjusting for its own rate in the previous time interval. Root mean square error of approximation (RMSEA, with 90% confidence intervals [CI]), Tucker Lewis index (TLI) and the comparative fit index (CFI) assessed goodness of fit. Results: Models without a time lag provided a better fit for the data (RMSEA = 0.101 [CI, 0.089, 0.113]), compared to a model featuring a time lag in RNFLT (RMSEA = 0.114 [CI, 0.102, 0.126]) or MRW (RMSEA = 0.114 [CI, 0.102, 0.127]). The SEMs indicated that rates for both MRW and RNFLT were predicted by their own rate in the previous time interval and by the other measure's change in the concurrent time interval (P > 0.001 for all). No evidence of a clinically significant time lag for either parameter was determined. Conclusions: MRW and RNFLT exhibit concurrent changes over time in patients with glaucoma, with no clinically significant time lag determined. Translational Relevance: RNFLT may be more useful than MRW in early glaucoma assessment because of its previously reported lower variability and reduced sensitivity to intraocular pressure changes.


Subject(s)
Glaucoma , Optic Disk , Humans , Optic Disk/diagnostic imaging , Retinal Ganglion Cells , Nerve Fibers , Retina , Glaucoma/diagnosis , Tomography, Optical Coherence
15.
Invest Ophthalmol Vis Sci ; 65(4): 7, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564193

ABSTRACT

Purpose: This study investigates the temporal relationship between blood flow changes and alterations in retinal nerve fiber layer thickness (RNFLT) and mean deviation (MD) in individuals with glaucoma. Methods: Blood flow, measured by mean blur rate in optic nerve head vessels (MBRv) and tissues (MBRt) using laser speckle flowgraphy (LSFG)-NAVI, was analyzed using structural equation models (SEMs). SEMs assessed whether the previous rate of one parameter predicted the current rate of the other parameter, adjusted for its own rate in the previous time interval. Data from 345 eyes of 174 participants were gathered from visits every six months. Results: Rates of change of both MBRv and MBRt were significantly predicted by their own rate in the previous time interval and by the rate of change of MD in the previous time interval (P < 0.001 and P = 0.043, respectively), but not by the rate of MD in the concurrent interval (P = 0.947 and P = 0.549), implying that changes in MD precede changes in blood flow. Rates of change of RNFLT were predicted by their own previous rate and the rate of change of MBRv and MBRt in either the previous interval (P = 0.002 and P = 0.008) or the concurrent interval (P = 0.001 and P = 0.018), suggesting that MBR may change before RNFLT. Conclusions: The evidence supports a temporal sequence where MD changes precede blood flow changes, which, in turn, may precede alterations in RNFLT.


Subject(s)
Glaucoma , Optic Disk , Humans , Visual Fields , Retina , Nerve Fibers
16.
BMC Ophthalmol ; 24(1): 185, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654214

ABSTRACT

PURPOSE: The present study tested the hypothesis that repeated anti-VEGF injections are associated with reduced retinal nerve fiber layer (RNFL) and minimum rim width (MRW) of the optic nerve head. PATIENTS AND METHODS: Sixty-six patients with a history of intravitreal injections due to neovascular age-related macular degeneration were included. RNFL and MRW were measured using optical coherence tomography (Spectralis OCT, Heidelberg Engineering, Heidelberg, Germany). RESULTS: Mean global RNFL was 90.62 µm and both RNFL as well as MRW significantly decreased with advanced age (p = 0.005 and p = 0.019, respectively). Correlating for the number of injections, no significant impact on RNFL was found globally (p = 0.642) or in any of the sectors. In contrast, however, global MRW was significantly reduced with increasing numbers of intravitreal injections (p = 0.012). The same holds true when adjusted for the confounding factor age (RNFL p = 0.566 and MRW p = 0.023). CONCLUSION: Our study shows that repeated intravitreal injections due to choroidal neovascularization seem to have a deleterious effect on MRW but not on RNFL. This suggests that MRW is a more sensitive marker than RNFL for evaluating the effect of frequent intravitreal injections on the optic nerve head since it seems to be the first structure affected.


Subject(s)
Angiogenesis Inhibitors , Intravitreal Injections , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Cross-Sectional Studies , Male , Female , Aged , Tomography, Optical Coherence/methods , Angiogenesis Inhibitors/administration & dosage , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology , Aged, 80 and over , Optic Disk/pathology , Middle Aged , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/diagnosis , Visual Acuity , Ranibizumab/administration & dosage , Bevacizumab/administration & dosage
19.
Arq Bras Oftalmol ; 87(4): e2023, 2024.
Article in English | MEDLINE | ID: mdl-38656023

ABSTRACT

PURPOSE: We aimed to evaluate retinal nerve fiber and choroidal layer alterations in adolescents with anorexia nervosa using spectral-domain optical coherence tomography. METHODS: Thirty patients with anorexia nervosa and 30 healthy adolescents aged 12-18 years were included in this study. Their age, sex, body mass index, anorexia nervosa type, disease duration, and spectral-domain optical coherence tomography data were recorded. RESULTS: Central macular thickness and retinal nerve fiber layer thickness in the temporal and inferior regions were significantly lesser in patients with anorexia than in healthy controls (p<0.05). Moreover, significant choroidal thinning around the foveal and subfoveal regions in patients with anorexia was observed (p<0.05). In addition, a statistically significant relation between the increase in disease duration and the thinning of the inferior retinal nerve fiber layer was detected (p<0.05). CONCLUSION: The retinal nerve fiber layer and choroidal layer thicknesses were lesser in patients with anorexia than in healthy controls. Screening for retinal indices might prevent the development of irreversible retinal pathologies in adolescents with anorexia nervosa. In addition, thinning of the retinal nerve fiber and choroidal layers could reflect structural or functional changes in the brain of adolescents with anorexia nervosa.


Subject(s)
Anorexia Nervosa , Choroid , Nerve Fibers , Tomography, Optical Coherence , Humans , Anorexia Nervosa/diagnostic imaging , Anorexia Nervosa/pathology , Adolescent , Tomography, Optical Coherence/methods , Female , Choroid/diagnostic imaging , Choroid/pathology , Nerve Fibers/pathology , Case-Control Studies , Male , Child , Retina/diagnostic imaging , Retina/pathology , Body Mass Index , Reference Values , Statistics, Nonparametric
20.
Appl Immunohistochem Mol Morphol ; 32(5): 215-221, 2024.
Article in English | MEDLINE | ID: mdl-38650330

ABSTRACT

Practical yet reliable diagnostic tools for small-fiber neuropathy are needed. We aimed to establish a histopathologic protocol for estimating intraepidermal nerve fiber density (eIENFD) on formalin-fixed, paraffin-embedded tissue (FFPE), evaluate its reliability through intraobserver and interobserver analyses, and provide normative reference values for clinical use. Sixty-eight healthy participants underwent nerve conduction studies and quantitative sensory testing. Skin biopsies from the distal and proximal leg were taken and processed using routine immunohistochemistry (anti-PGP9.5 antibodies) on thin 5 µm sections. eIENFD was assessed with a modified counting protocol. Interobserver and intraobserver reliabilities were excellent (ICC=0.9). eIENFD was higher in females than males (fibers/mm, 14.3±4.4 vs. 11.6±5.8, P <0.05), decreased with age ( r s =-0.47, P <0.001), and was higher proximally than distally (15.0±5.5 vs. 13.0±5.3, P =0.002). Quantile regression equations for the fifth percentile of distal and proximal eIENFD were presented: 13.125-0.161×age (y)-0.932×sex (male=1; female=0) and 17.204-0.192×age (y)-3.313×sex (male=1; female=0), respectively. This study introduces a reliable and reproducible method for estimating epidermal nerve fiber density through immunostaining on 5-µm thin FFPE tissue samples. Normative data on eIENFD is provided. Regression equations help identify abnormal decreases in small nerve fiber density.


Subject(s)
Epidermis , Nerve Fibers , Small Fiber Neuropathy , Humans , Male , Female , Epidermis/pathology , Epidermis/metabolism , Nerve Fibers/pathology , Nerve Fibers/metabolism , Small Fiber Neuropathy/diagnosis , Small Fiber Neuropathy/pathology , Adult , Middle Aged , Aged , Immunohistochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...