Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.556
Filter
1.
Biotechnol J ; 19(5): e2300734, 2024 May.
Article in English | MEDLINE | ID: mdl-38719571

ABSTRACT

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Subject(s)
DNA , Ganglia, Spinal , Nerve Growth Factor , Nerve Regeneration , Animals , Rats , PC12 Cells , DNA/chemistry , Ganglia, Spinal/cytology , Nerve Growth Factor/chemistry , Nerve Growth Factor/pharmacology , Nanostructures/chemistry , Neurons , Sciatic Nerve , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley
2.
ACS Chem Neurosci ; 15(9): 1755-1769, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602894

ABSTRACT

Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.


Subject(s)
Brain-Derived Neurotrophic Factor , Copper , Nerve Growth Factor , Peptides, Cyclic , Vascular Endothelial Growth Factor A , PC12 Cells , Animals , Rats , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Copper/metabolism , Copper/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Signal Transduction/drug effects , Signal Transduction/physiology , Ionophores/pharmacology , Cation Transport Proteins/metabolism , Receptor, trkA/metabolism
3.
Bioorg Med Chem ; 101: 117637, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38368633

ABSTRACT

Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.


Subject(s)
Nerve Growth Factors , Quinolines , Animals , Rats , Cell Differentiation/drug effects , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , PC12 Cells/drug effects , Phosphorylation
4.
J Control Release ; 368: 140-156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373473

ABSTRACT

Traumatic brain injuries(TBI) pose significant challenges to human health, specifically neurological disorders and related motor activities. After TBI, the injured neuronal tissue is known for hardly regenerated and recovered to their normal neuron physiology and tissue compositions. For this reason, tissue engineering strategies that promote neuronal regeneration have gained increasing attention. This study explored the development of a novel neural tissue regeneration cryogel by combining brain-derived decellularized extracellular matrix (ECM) with heparin sulfate crosslinking that can perform nerve growth factor (NGF) release ability. Morphological and mechanical characterizations of the cryogels were performed to assess their suitability as a neural regeneration platform. After that, the heparin concnentration dependent effects of varying NGF concentrations on cryogel were investigated for their controlled release and impact on neuronal cell differentiation. The results revealed a direct correlation between the concentration of released NGF and the heparin sulfate ratio in cryogel, indicating that the cryogel can be tailored to carry higher loads of NGF with heparin concentration in cryogel that induced higher neuronal cell differentiation ratio. Furthermore, the study evaluated the NGF loaded cryogels on neuronal cell proliferation and brain tissue regeneration in vivo. The in vivo results suggested that the NGF loaded brain ECM derived cryogel significantly affects the regeneration of brain tissue. Overall, this research contributes to the development of advanced neural tissue engineering strategies and provides valuable insights into the design of regenerative cryogels that can be customized for specific therapeutic applications.


Subject(s)
Brain Injuries, Traumatic , Tissue Engineering , Humans , Brain , Brain Injuries, Traumatic/therapy , Cryogels , Extracellular Matrix , Heparin , Nerve Growth Factor/pharmacology , Nerve Regeneration , Sulfates , Tissue Engineering/methods
5.
ACS Nano ; 18(10): 7504-7520, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412232

ABSTRACT

The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Rats , Animals , Exosomes/metabolism , Cell Differentiation/genetics , Porosity , Phosphatidylinositol 3-Kinases , Nerve Growth Factor/analysis , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Bone Regeneration/physiology , Osteogenesis , Printing, Three-Dimensional
6.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333908

ABSTRACT

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Subject(s)
Nerve Growth Factor , Osteogenesis , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Dental Pulp , Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , RNA, Small Interfering/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Proliferation
7.
Macromol Biosci ; 24(5): e2300453, 2024 May.
Article in English | MEDLINE | ID: mdl-38224015

ABSTRACT

Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.


Subject(s)
Brain-Derived Neurotrophic Factor , Gold , Metal Nanoparticles , Nerve Growth Factor , Spinal Cord Injuries , Tissue Scaffolds , Animals , Rats , Brain-Derived Neurotrophic Factor/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Nerve Growth Factor/pharmacology , Nerve Regeneration/drug effects , Oligopeptides/pharmacology , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats, Sprague-Dawley , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Tissue Scaffolds/chemistry
8.
BMC Pulm Med ; 24(1): 55, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273268

ABSTRACT

BACKGROUND: Asthma is the most common allergic disease characterized by an inflammatory response in the airways. Mechanismly, urban particulate matter (PM) is the most widely air pollutant associated with increased asthma morbidity and airway inflammation. Current research found that vitamin D is an essential vitamin with anti-inflammatory, antioxidant and other medical efficacy. Inadequate or deficient vitamin D often leads to the pathogenesis and stability of asthma. NGF exacerbates airway inflammation in asthma by promoting smooth muscle cell proliferation and inducing the Th2 immune response. Activation of the Nrf2/HO-1 signaling pathway can exert a protective effect on the inflammatory response in bronchial asthma. However, the specific mechanism of this pathway in PM-involved asthmatic airway smooth muscle cells remains unclear. METHODS: Mice were sensitized and challenged with Ovalbumin (OVA) to establish an asthma model. They were then exposed to either PM, vitamin D or a combination of both, and inflammatory responses were observed. Including, acetylcholine stimulation at different concentrations measured airway hyperresponsiveness in mice. Bronchoalveolar lavage fluid (BALF) and serum were collected for TNF-α, IL-1ß, IL-6, and Nerve growth factor (NGF) analysis. Additionally, lung tissues underwent histopathological examination to observe alveolar structure and inflammatory cell infiltration. Specific ELISA kits were utilized to determine the levels of the inflammatory factors TNF-α, IL-1ß, IL-6, and Nerve growth factor (NGF). Nrf2/HO-1 signaling pathways were examined by western blot analysis. Meanwhile, we constructed a cell system with low HO-1 expression by lentiviral transfection of airway smooth muscle cells. The changes of Nrf2, HO-1, and NGF were observed after the treatment of OVA, PM, and Vit D were given. RESULTS: The in vivo results showed that vitamin D significantly alleviated pathological changes in lung tissue of PM-exposed mice models. Mechanismly, vitamin D decreased substantial inflammatory cell infiltration in lung tissue, as well as the number of inflammatory cells in BALF. Furthermore, vitamin D reduced the heightened inflammatory factors including of TNF-α, IL-1ß, IL-6, and NGF caused by PM exposure, and triggered the activity of nucleus Nrf2 and HO-1 in PM-exposed asthmatic mice. Notably, knockdown HO-1 weakens the Vitamin D- mediated inhibition to pollution toxicity in asthma. Importantly, in vitro experiments on OVA-stimulated mice airway smooth muscle cells, the results showed that OVA and PM, respectively, reduced Nrf2/HO-1 and increased NGF's expression, while vitamin D reversed the process. And in the HO-1 knockdown cell line of Lenti-si-HO-1 ASMCs, OVA and PM reduced Nrf2's expression, while HO-1 and NGF's expression were unchanged. CONCLUSIONS: The above results demastrate that vitamin D downregulated the inflammatory response and the expression of NGF by regulating the Nrf2/HO-1 signaling pathways in airway smooth muscle cells, thereby showing potent anti-inflammatory activity in asthma.


Subject(s)
Asthma , Particulate Matter , Mice , Animals , Particulate Matter/toxicity , NF-E2-Related Factor 2/metabolism , Vitamin D/pharmacology , Vitamin D/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Asthma/chemically induced , Asthma/drug therapy , Lung/pathology , Inflammation , Signal Transduction , Bronchoalveolar Lavage Fluid , Anti-Inflammatory Agents/pharmacology , Vitamins/therapeutic use , Ovalbumin , Disease Models, Animal , Mice, Inbred BALB C , Cytokines/metabolism
9.
Biofabrication ; 16(2)2024 02 09.
Article in English | MEDLINE | ID: mdl-38262053

ABSTRACT

Despite recent advances in the field of microphysiological systems (MPSs), availability of models capable of mimicking the interactions between the nervous system and innervated tissues is still limited. This represents a significant challenge in identifying the underlying processes of various pathological conditions, including neuropathic, cardiovascular and metabolic disorders. In this novel study, we introduce a compartmentalized three-dimensional (3D) coculture system that enables physiologically relevant tissue innervation while recording neuronal excitability. By integrating custom microelectrode arrays into tailored glass chips microfabricated via selective laser-etching, we developed an entirely novel class of innervation MPSs (INV-MPS). This INV-MPS allows for manipulation, visualization, and electrophysiological analysis of individual axons innervating complex 3D tissues. Here, we focused on sensory innervation of 3D tumor tissue as a model case study since cancer-induced pain represents a major unmet medical need. The system was compared with existing nociception models and successfully replicated axonal chemoattraction mediated by nerve growth factor (NGF). Remarkably, in the absence of NGF, 3D cancer spheroids cocultured in the adjacent compartment induced sensory neurons to consistently cross the separating barrier and establish fine innervation. Moreover, we observed that crossing sensory fibers could be chemically excited by distal application of known pain-inducing agonists only when cocultured with cancer cells. To our knowledge, this is the first system showcasing morphological and electrophysiological analysis of 3D-innervated tumor tissuein vitro, paving the way for a plethora of studies into innervation-related diseases and improving our understanding of underlying pathophysiology.


Subject(s)
Neoplasms , Nerve Growth Factor , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Microelectrodes , Sensory Receptor Cells/metabolism , Pain/metabolism , Ganglia, Spinal/physiology
10.
Int J Biol Macromol ; 260(Pt 2): 129561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246449

ABSTRACT

MSCs (Mesenchymal Stem Cells) can differentiate into various lineages, including neurons and glial cells. In the past few decades, MSCs have been well explored in the context of neuronal differentiation and have been reported to have the immense potential to form distinct kinds of neurons. The distinguishing features of MSCs make them among the most desired cell sources for stem cell therapy. This study involved the trans-differentiation of Adipose-derived human Mesenchymal Stem Cells (ADMSCs) into neurons. The protocol employs a cocktail of chemical inducers in different combinations, including Brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), and Nerve growth factor (NGF) Fibroblastic growth factor (FGF), in induction media. Both types have been successfully differentiated into neurons, confirmed by morphological aspects and the presence of neural-specific markers through RT-PCR (Reverse transcription polymerase chain reaction) studies and immunocytochemistry assay. They have shown excellent morphology with long neurites, synaptic connections, and essential neural markers to validate their identity. The results may significantly contribute to cell replacement therapy for neurological disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Mesenchymal Stem Cells , Humans , Brain-Derived Neurotrophic Factor/genetics , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Cell Differentiation/physiology , Cells, Cultured
11.
CNS Neurol Disord Drug Targets ; 23(4): 449-462, 2024.
Article in English | MEDLINE | ID: mdl-37016521

ABSTRACT

Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.


Subject(s)
Brain Neoplasms , Glioma , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Reactive Oxygen Species/metabolism , Glioma/metabolism , Receptors, Nerve Growth Factor/metabolism
12.
Eur Rev Med Pharmacol Sci ; 27(23): 11340-11350, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38095383

ABSTRACT

OBJECTIVE: Peripheral nerve injuries present challenges in achieving full functional restoration, necessitating effective therapeutic strategies. Oxytocin, known for its neuroprotective and anti-inflammatory properties, has shown potential in nerve recovery. This study aims to elucidate the role of oxytocin in nerve recovery via the nuclear factor erythroid 2-related factor 2 (Nrf2) and irisin pathways. MATERIALS AND METHODS: Adult male Wistar rats (n=30) were subjected to surgical dissection of sciatic nerves and divided into Control, Surgery and Saline Group, and Surgery and Oxytocin (OT) group. Electromyographic (EMG) recordings, inclined plane tests, and histological assessments were conducted to evaluate nerve function, and Nerve growth factor (NGF) immunoexpression and axonal parameters were measured. Plasma irisin levels, nerve NGF, and Nrf2 levels were quantified. RESULTS: The Surgery and Saline Group exhibited impaired EMG latency, amplitude, and inclined plane score compared to Controls, while the Surgery and OT Group demonstrated improved outcomes. Histomorphometric analysis revealed increased NGF immunoexpression, axon number, diameter, and reduced fibrosis in the Surgery and OT Group. Plasma irisin levels were higher following oxytocin administration. Additionally, nerve NGF and Nrf2 levels were elevated in the Surgery and OT Group. CONCLUSIONS: OT administration mitigated nerve injury effects, promoting functional and histological improvements. Elevated NGF and Nrf2 levels, along with increased irisin, indicated the potential interplay of these pathways in enhancing nerve recovery. The results align with OT's neuroprotective and anti-inflammatory roles, suggesting its potential as a therapeutic intervention for nerve injuries. OT's positive impact on nerve recovery is associated with its modulation of Nrf2 and irisin pathways, which collectively enhance antioxidant defense and neurotrophic support and mitigate inflammation. These findings underline OT's potential as a therapeutic agent to enhance nerve regeneration and recovery. Further research is needed to elucidate the intricate molecular mechanisms and potential clinical applications of OT in nerve injury management.


Subject(s)
Oxytocin , Peripheral Nerve Injuries , Rats , Animals , Male , Oxytocin/pharmacology , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/pathology , Rats, Wistar , NF-E2-Related Factor 2 , Fibronectins , Nerve Growth Factor/pharmacology , Sciatic Nerve , Anti-Inflammatory Agents/pharmacology
13.
Acta Cir Bras ; 38: e387823, 2023.
Article in English | MEDLINE | ID: mdl-38055406

ABSTRACT

PURPOSE: To evaluate the neuroprotective effects of Rilmenidine on diabetic peripheral neuropathy (DPN) in a rat model of diabetes induced by streptozotocin (STZ). METHODS: STZ (60 mg/kg) was administered to adult Sprague-Dawley rats to induce diabetes. On the 30th day after STZ administration, electromyography (EMG) and motor function tests confirmed the presence of DPN. Group 1: Control (n = 10), Group 2: DM + 0.1 mg/kg Rilmenidine (n = 10), and Group 3: DM + 0.2 mg/kg Rilmenidine (n = 10) were administered via oral lavage for four weeks. EMG, motor function test, biochemical analysis, and histological and immunohistochemical analysis of sciatic nerves were then performed. RESULTS: The administration of Rilmenidine to diabetic rats substantially reduced sciatic nerve inflammation and fibrosis and prevented electrophysiological alterations. Immunohistochemistry of sciatic nerves from saline-treated rats revealed increased perineural thickness, HMGB-1, tumor necrosis factor-α, and a decrease in nerve growth factor (NGF), LC-3. In contrast, Rilmendine significantly inhibited inflammation markers and prevented the reduction in NGF expression. In addition, Rilmenidine significantly decreased malondialdehyde and increased diabetic rats' total antioxidative capacity. CONCLUSIONS: The findings of this study suggest that Rilmenidine may have therapeutic effects on DNP by modulating antioxidant and autophagic pathways.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Rats , Animals , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Rilmenidine/pharmacology , Rilmenidine/therapeutic use , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Sciatic Nerve/pathology , Antioxidants/therapeutic use , Inflammation/pathology
14.
Sci Transl Med ; 15(727): eade4619, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117901

ABSTRACT

Peripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the Ngf gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair. Similarly, inhibition of the NGF receptor tropomyosin receptor kinase A (TrkA) abrogated tendon healing in mouse tendon injury. Sural nerve transection blocked the postinjury increase in tendon sensory innervation and the expansion of tendon sheath progenitor cells (TSPCs) expressing tubulin polymerization promoting protein family member 3. Single cell and spatial transcriptomics revealed that disruption of sensory innervation resulted in dysregulated inflammatory signaling and transforming growth factor-ß (TGFß) signaling in injured mouse tendon. Culture of mouse TSPCs with conditioned medium from dorsal root ganglia neuron further supported a role for neuronal mediators and TGFß signaling in TSPC proliferation. Transcriptomic and histologic analyses of injured human tendon biopsy samples supported a role for innervation and TGFß signaling in human tendon regeneration. Last, treating mice after tendon injury systemically with a small-molecule partial agonist of TrkA increased neurovascular response, TGFß signaling, TSPC expansion, and tendon tissue repair. Although further studies should investigate the potential effects of denervation on mechanical loading of tendon, our results suggest that peripheral innervation is critical for the regenerative response after acute tendon injury.


Subject(s)
Nerve Growth Factor , Tendon Injuries , Animals , Humans , Mice , Cell Proliferation , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Stem Cells , Tendons/metabolism , Transforming Growth Factor beta , Receptor, trkA/metabolism
15.
ACS Appl Bio Mater ; 6(12): 5854-5863, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37948755

ABSTRACT

It is challenging to treat peripheral nerve injury (PNI) clinically. As the gold standard for peripheral nerve repair, autologous nerve grafting remains a critical limitation, including tissue availability, donor-site morbidity, immune rejection, etc. Recently, conductive hydrogels (CHs) have shown potential applications in neural bioengineering due to their good conductivity, biocompatibility, and low immunogenicity. Herein, a hybrid electrically conductive hydrogel composed of acrylic acid derivatives, gelatin, and heparin with sustained nerve growth factor (NGF) release property was developed. The rat sciatic nerve injury (SNI) model (10 mm long segment defect) was used to investigate the efficacy of these hydrogel conduits in facilitating peripheral nerve repair. The results showed that the hydrogel conduits had excellent conductivity, mechanical properties, and biocompatibility. In addition, NGF immobilized in the hydrogel conduits had good sustained release characteristics. Finally, functional recovery and electrophysiological evaluations, together with histological analysis, indicated that the hydrogel conduits immobilizing NGF had superior effects on motor recovery, axon growth, and remyelination, thereby significantly accelerating the repairing of the sciatic nerve. This study demonstrated that hybrid electrically conductive hydrogels with local NGF release could be effectively used for PNI repair.


Subject(s)
Hydrogels , Peripheral Nerve Injuries , Rats , Animals , Hydrogels/pharmacology , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/physiology , Peripheral Nerve Injuries/therapy , Nerve Regeneration/physiology
16.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003427

ABSTRACT

In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.


Subject(s)
Hydrogen Peroxide , Receptor, trkA , Humans , Mice , Animals , Receptor, trkA/metabolism , Feedback , Hydrogen Peroxide/pharmacology , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/metabolism , Receptor, Nerve Growth Factor/metabolism , Cell Line , Oxidative Stress , Epithelial Cells/metabolism
17.
Exp Eye Res ; 237: 109693, 2023 12.
Article in English | MEDLINE | ID: mdl-37890756

ABSTRACT

People suffering from diabetes mellitus commonly have to face diabetic retinopathy (DR), an eye disease characterized by early retinal neurodegeneration and microvascular damage, progressively leading to sight loss. The Ins2Akita (Akita) diabetic mouse presents the characteristics of DR and experimental drugs can be tested on this model to check their efficacy before going to the clinic. Topical administration of Nerve Growth Factor (NGF) has been recently demonstrated to prevent DR in the Akita mouse, reverting the thinning of retinal layers and protecting the retinal ganglion cells (RGCs) from death. In this study, we characterize the effects of topical NGF on neuroretina function, quantified with the electroretinogram (ERG). In particular, we show that NGF can ameliorate RGC conduction in the retina of Akita mice, which correlates with a recovery of retinal nerve fiber plus ganglion cell layer (RNFL-GCL) structure. Overall, our preclinical results highlight that topical administration of NGF could be a promising therapeutic approach for DR, being capable of exerting a beneficial impact on retinal functionality.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Disease Models, Animal , Insulin/metabolism , Nerve Growth Factor/pharmacology , Retina/metabolism
18.
J Trace Elem Med Biol ; 80: 127318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864919

ABSTRACT

BACKGROUND: Aluminum and nickel are potent neurotoxicants to which humans are constantly exposed. Previous studies have demonstrated that these two metals can affect the motor system, but their effects on the cerebellum, a central nervous system region with the highest number of neurons, have remained largely unexplored. Therefore, we conducted a study to investigate the adverse effects of Al, Ni, and Al+Ni in vivo. METHODS: In our study, seven male Sprague Dawley rats per group were orally exposed to deionized water, 0.2 mg/kg of Ni, 1 mg/kg of Al, and 0.2 mg/kg of Ni + 1 mg/kg of Al (as a binary heavy metals mixture; HMM), respectively. RESULTS: Ni, Al, and HMM exposed rats accumulated higher levels of Al and Ni compared to controls, and HMM treated animals had higher levels of Ca and Fe in the cerebellum (p < 0.05). Malondialdehyde (MDA) levels were significantly (p < 0.05) higher in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) activities were significantly (p < 0.05) reduced in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Ni, Al, and HMM significantly (p < 0.05) shortened the length of time of the grip in comparison to the control. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels were significantly decreased in the nickel, Al, and heavy metal mixture groups compared with the control group. Moreover, there was a significant decrease in the activity of acetylcholinesterase (AChE) and a increase in cyclooxygenase-2 (COX-2) activity in the Ni, Al, and HMM treated groups compared to the control group. CONCLUSION: HMM exposed animals had significantly poorer performance in the Rotarod test (p < 0.05) than controls. Al and Ni induced impairment of cerebellar function at various levels.


Subject(s)
Metals, Heavy , Motor Disorders , Humans , Rats , Male , Animals , Acetylcholinesterase/metabolism , Nickel/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Oxidative Stress , Rats, Sprague-Dawley , Metals, Heavy/pharmacology , Antioxidants/metabolism , Cerebellum/metabolism , Catalase/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Water/pharmacology
19.
Carbohydr Polym ; 321: 121179, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739486

ABSTRACT

Diabetic foot ulcers (DFUs) often remain untreated because they are difficult to heal, caused by reduced skin sensitivity and impaired blood vessel formation. In this study, we propose a novel approach to manage DFUs using a multifunctional hydrogel made from a combination of alginate and gum arabic. To enhance the healing properties of the hydrogel, we immobilized nerve growth factor (NGF), within specially designed mesoporous silica nanoparticles (MSN). The MSNs were then incorporated into the hydrogel along with carnosine (Car), which further improves the hydrogel's therapeutic properties. The hydrogel containing the immobilized NGF (SiNGF) could control the sustain release of NGF for >21 days, indicating that the target hydrogel (AG-Car/SiNGF) can serve as a suitable reservoir managing diabetic wound regeneration. In addition, Car was able to effectively reduce inflammation and significantly increase angiogenesis compared to the control group. Based on the histological results obtained from diabetic rats, the target hydrogel (AG-Car/SiNGF) reduced inflammation and improved re-epithelialization, angiogenesis, and collagen deposition. Specific staining also confirmed that AG-Car/SiNGF exhibited improved tissue neovascularization, transforming growth factor-beta (TGFß) expression, and nerve neurofilament. Overall, our research suggests that this newly developed composite system holds promise as a potential treatment for non-healing diabetic wounds.


Subject(s)
Acacia , Carnosine , Diabetes Mellitus, Experimental , Diabetic Foot , Animals , Rats , Alginates/pharmacology , Biomimetics , Carnosine/pharmacology , Carnosine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Gum Arabic , Hydrogels/pharmacology , Inflammation , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use
20.
Nitric Oxide ; 140-141: 30-40, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37699453

ABSTRACT

Urine samples of female patients with overactive bladder (OAB) are characterized by low levels of nerve growth factor (NGF) and elevated concentrations of nitric oxide (NO) compared to healthy controls. We therefore examined how NO might regulate NGF synthesis using rat bladder smooth muscle (SMCs) and urothelial (UROs) cells in culture. In UROs, incubation in hyperglycemic conditions to mimic insulin insensitivity present in the OAB cohort increased secretion of NO and concomitantly decreased NGF, except when the NO synthase inhibitor, l-NAME (1 mM) was present. Sodium nitroprusside (SNP) (300 µM, 24 h), a NO generator, decreased NGF levels and decreased cyclic GMP (cGMP) content, a process validated by the cGMP synthase inhibitor ODQ (100 µM). Alternatively, SNP increased mRNA of both NGF and matrix metalloproteinase-9 (MMP-9). MMP-9 knockout of UROs by Crispr-Cas9 potently decreased the effect of SNP on NGF, implying a dependent role of NO on MMP-9. On the other hand, matrix metalloproteinase-7 (MMP-7) activity was increased by SNP, which taken together with increase in NGF mRNA, suggests a compensatory mechanism. In SMCs, hyperglycemic conditions had the same effect on extracellular content of NO and NGF than in UROs. SNP also decreased NGF secretion but increased cGMP content. Stable permeable analogs of cGMP 8-(4-Chlorophenylthio)-cGMP (1 mM) and N2,2'-O-Dibutyryl-cGMP (3 mM) inhibited NGF release. NGF and MMP-9 mRNA expression was unchanged by SNP. Deletion of MMP-9 in SMCs by Crispr-Cas9 did not alter the effect of SNP. Finally, SNP decreased MMP-7 activity, diminishing the conversion of proNGF to NGF. These results demonstrate that enhanced NO secretion triggered by high glucose decreases NGF secretion through pathways unique for each cell type that involve cGMP and proteases MMP-7 and MMP-9. These results might help to explain our observations from the urine from patients with OAB associated with metabolic syndrome.


Subject(s)
Matrix Metalloproteinase 9 , Nitric Oxide , Rats , Animals , Humans , Female , Nitric Oxide/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 7 , Urinary Bladder , Nerve Growth Factor/pharmacology , Nitroprusside/pharmacology , Enzyme Inhibitors , RNA, Messenger , Cyclic GMP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...