Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.635
Filter
1.
CNS Neurosci Ther ; 30(6): e14779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828650

ABSTRACT

AIMS: Previous neuroimaging studies of vascular cognitive impairment, no dementia (VCIND), have reported functional alterations, but far less is known about the effects of cognitive training on functional connectivity (FC) of intrinsic connectivity networks (ICNs) and how they relate to intervention-related cognitive improvement. This study provides comprehensive research on the changes in intra- and inter-brain functional networks in patients with VCIND who received computerized cognitive training, with a focus on the underlying mechanisms and potential therapeutic strategies. METHODS: We prospectively collected 60 patients with VCIND who were randomly divided into the training group (N = 30) receiving computerized cognitive training and the control group (N = 30) receiving fixed cognitive training. Functional MRI scans and cognitive assessments were performed at baseline, at the 7-week training, and at the 6-month follow-up. Utilizing templates for ICNs, the study employed a linear mixed model to compare intra- and inter-network FC changes between the two groups. Pearson correlation was applied to calculate the relationship between FC and cognitive function. RESULTS: We found significantly decreased intra-network FC within the default mode network (DMN) following computerized cognitive training at Month 6 (p = 0.034), suggesting a potential loss of functional specialization. Computerized training led to increased functional coupling between the DMN and sensorimotor network (SMN) (p = 0.01) and between the language network (LN) and executive control network (ECN) at Month 6 (p < 0.001), indicating compensatory network adaptations in patients with VCIND. Notably, the intra-LN exhibited enhanced functional specialization after computerized cognitive training (p = 0.049), with significant FC increases among LN regions, which correlated with improvements in neuropsychological measures (p < 0.05), emphasizing the targeted impact of computerized cognitive training on language abilities. CONCLUSIONS: This study provides insights into neuroplasticity and adaptive changes resulting from cognitive training in patients with VCIND, with implications for potential therapeutic strategies.


Subject(s)
Brain , Cognitive Dysfunction , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Aged , Cognitive Dysfunction/therapy , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/rehabilitation , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Therapy, Computer-Assisted/methods , Prospective Studies , Cognitive Training
2.
CNS Neurosci Ther ; 30(6): e14786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828694

ABSTRACT

PURPOSE: To investigate dynamic functional connectivity (dFC) within the cerebellar-whole brain network and dynamic topological properties of the cerebellar network in obstructive sleep apnea (OSA) patients. METHODS: Sixty male patients and 60 male healthy controls were included. The sliding window method examined the fluctuations in cerebellum-whole brain dFC and connection strength in OSA. Furthermore, graph theory metrics evaluated the dynamic topological properties of the cerebellar network. Additionally, hidden Markov modeling validated the robustness of the dFC. The correlations between the abovementioned measures and clinical assessments were assessed. RESULTS: Two dynamic network states were characterized. State 2 exhibited a heightened frequency, longer fractional occupancy, and greater mean dwell time in OSA. The cerebellar networks and cerebrocerebellar dFC alterations were mainly located in the default mode network, frontoparietal network, somatomotor network, right cerebellar CrusI/II, and other networks. Global properties indicated aberrant cerebellar topology in OSA. Dynamic properties were correlated with clinical indicators primarily on emotion, cognition, and sleep. CONCLUSION: Abnormal dFC in male OSA may indicate an imbalance between the integration and segregation of brain networks, concurrent with global topological alterations. Abnormal default mode network interactions with high-order and low-level cognitive networks, disrupting their coordination, may impair the regulation of cognitive, emotional, and sleep functions in OSA.


Subject(s)
Cerebellum , Nerve Net , Sleep Apnea, Obstructive , Humans , Male , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Middle Aged , Adult , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Magnetic Resonance Imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging
4.
Brain Behav ; 14(5): e3518, 2024 May.
Article in English | MEDLINE | ID: mdl-38698619

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the functional changes associated with mild cognitive impairment (MCI) using independent component analysis (ICA) with the word generation task functional magnetic resonance imaging (fMRI) and resting-state fMRI. METHODS: In this study 17 patients with MCI and age and education-matched 17 healthy individuals as control group are investigated. All participants underwent resting-state fMRI and task-based fMRI while performing the word generation task. ICA was used to identify the appropriate independent components (ICs) and their associated networks. The Dice Coefficient method was used to determine the relevance of the ICs to the networks of interest. RESULTS: IC-14 was found relevant to language network in both resting-state and task-based fMRI, IC-4 to visual, and IC-28 to dorsal attention network (DAN) in word generation task-based fMRI by Sorento-Dice Coefficient. ICA showed increased activation in language network, which had a larger voxel size in resting-state functional MRI than word generation task-based fMRI in the bilateral lingual gyrus. Right temporo-occipital fusiform cortex, right hippocampus, and right thalamus were also activated in the task-based fMRI. Decreased activation was found in DAN and visual network MCI patients in word generation task-based fMRI. CONCLUSION: Task-based fMRI and ICA are more sophisticated and reliable tools in evaluation cognitive impairments in language processing. Our findings support the neural mechanisms of the cognitive impairments in MCI.


Subject(s)
Cognitive Dysfunction , Language , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Aged , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain Mapping/methods , Brain/physiopathology , Brain/diagnostic imaging , Rest/physiology
5.
Brain Behav ; 14(5): e3504, 2024 May.
Article in English | MEDLINE | ID: mdl-38698583

ABSTRACT

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Subject(s)
Electroacupuncture , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Electroacupuncture/methods , Male , Rats , Reperfusion Injury/physiopathology , Reperfusion Injury/therapy , Reperfusion Injury/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/physiopathology
6.
PLoS One ; 19(5): e0302470, 2024.
Article in English | MEDLINE | ID: mdl-38701101

ABSTRACT

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Subject(s)
Cognition , Gyrus Cinguli , Histamine , Inflammation , Lipopolysaccharides , Animals , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Inflammation/metabolism , Mice , Male , Histamine/blood , Histamine/metabolism , Kainic Acid , Interleukin-6/blood , Interleukin-6/metabolism , Behavior, Animal , Nerve Net/physiopathology , Mice, Inbred C57BL
7.
Neural Plast ; 2024: 8862647, 2024.
Article in English | MEDLINE | ID: mdl-38715980

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that is characterized by inattention, hyperactivity, and impulsivity. The neural mechanisms underlying ADHD remain inadequately understood, and current approaches do not well link neural networks and attention networks within brain networks. Our objective is to investigate the neural mechanisms related to attention and explore neuroimaging biological tags that can be generalized within the attention networks. In this paper, we utilized resting-state functional magnetic resonance imaging data to examine the differential functional connectivity network between ADHD and typically developing individuals. We employed a graph convolutional neural network model to identify individuals with ADHD. After classification, we visualized brain regions with significant contributions to the classification results. Our results suggest that the frontal, temporal, parietal, and cerebellar regions are likely the primary areas of dysfunction in individuals with ADHD. We also explored the relationship between regions of interest and attention networks, as well as the connection between crucial nodes and the distribution of positively and negatively correlated connections. This analysis allowed us to pinpoint the most discriminative brain regions, including the right orbitofrontal gyrus, the left rectus gyrus and bilateral insula, the right inferior temporal gyrus and bilateral transverse temporal gyrus in the temporal region, and the lingual gyrus of the occipital lobe, multiple regions of the basal ganglia and the upper cerebellum. These regions are primarily involved in the attention executive control network and the attention orientation network. Dysfunction in the functional connectivity of these regions may contribute to the underlying causes of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Adult , Brain Mapping/methods , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Young Adult , Adolescent , Child , Attention/physiology
8.
BMC Pediatr ; 24(1): 318, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720281

ABSTRACT

Reading learning disability (RLD) is characterized by a specific difficulty in learning to read that is not better explained by an intellectual disability, lack of instruction, psychosocial adversity, or a neurological disorder. According to the domain-general hypothesis, a working memory deficit is the primary problem. Working memory in this population has recently been linked to altered resting-state functional connectivity within the default mode network (DMN), salience network (SN), and frontoparietal network (FPN) compared to that in typically developing individuals. The main purpose of the present study was to compare the within-network functional connectivity of the DMN, SN, FPN, and reading network in two groups of children with RLD: a group with lower-than-average working memory (LWM) and a group with average working memory (AWM). All subjects underwent resting-state functional magnetic resonance imaging (fMRI), and data were analyzed from a network perspective using the network brain statistics framework. The results showed that the LWM group had significantly weaker connectivity in a network that involved brain regions in the DMN, SN, and FPN than the AWM group. Although there was no significant difference between groups in reading network in the present study, other studies have shown relationship of the connectivity of the angular gyrus, supramarginal gyrus, and inferior parietal lobe with the phonological process of reading. The results suggest that although there are significant differences in functional connectivity in the associated networks between children with LWM and AWM, the distinctive cognitive profile has no specific effect on the reading network.


Subject(s)
Dyslexia , Magnetic Resonance Imaging , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Child , Male , Female , Dyslexia/physiopathology , Dyslexia/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Reading , Case-Control Studies
9.
Sci Rep ; 14(1): 10495, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714807

ABSTRACT

Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed. Two minutes long 64-channel EEG recordings were registered during resting, eyes closed condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC-c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, the result of lower diameter, higher leaf number, and also higher maximum degree and maximum betweenness centrality in patients suggest a star-like, and more random network topology in patients with schizophrenia. Our findings are in accordance with some previous findings based on resting-state EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less optimal, more centralized organization.


Subject(s)
Brain , Electroencephalography , Schizophrenia , Humans , Schizophrenia/physiopathology , Electroencephalography/methods , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Rest/physiology , Algorithms , Middle Aged , Magnetic Resonance Imaging/methods , Case-Control Studies , Young Adult
10.
Addict Biol ; 29(5): e13395, 2024 May.
Article in English | MEDLINE | ID: mdl-38709211

ABSTRACT

The brain mechanisms underlying the risk of cannabis use disorder (CUD) are poorly understood. Several studies have reported changes in functional connectivity (FC) in CUD, although none have focused on the study of time-varying patterns of FC. To fill this important gap of knowledge, 39 individuals at risk for CUD and 55 controls, stratified by their score on a self-screening questionnaire for cannabis-related problems (CUDIT-R), underwent resting-state functional magnetic resonance imaging. Dynamic functional connectivity (dFNC) was estimated using independent component analysis, sliding-time window correlations, cluster states and meta-state indices of global dynamics and were compared among groups. At-risk individuals stayed longer in a cluster state with higher within and reduced between network dFNC for the subcortical, sensory-motor, visual, cognitive-control and default-mode networks, relative to controls. More globally, at-risk individuals had a greater number of meta-states and transitions between them and a longer state span and total distance between meta-states in the state space. Our findings suggest that the risk of CUD is associated with an increased dynamic fluidity and dynamic range of FC. This may result in altered stability and engagement of the brain networks, which can ultimately translate into altered cortical and subcortical function conveying CUD risk. Identifying these changes in brain function can pave the way for early pharmacological and neurostimulation treatment of CUD, as much as they could facilitate the stratification of high-risk individuals.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Marijuana Abuse , Humans , Male , Female , Marijuana Abuse/physiopathology , Marijuana Abuse/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Young Adult , Adult , Case-Control Studies , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Adolescent
11.
Hum Brain Mapp ; 45(7): e26689, 2024 May.
Article in English | MEDLINE | ID: mdl-38703095

ABSTRACT

Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (ß = .837, r = 0.472, p < .001) and glucose covariance (ß = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Nerve Net , Positron-Emission Tomography , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Male , Female , Aged , tau Proteins/metabolism , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/physiopathology , Glucose/metabolism , Connectome , Prospective Studies , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Aged, 80 and over
12.
Hum Brain Mapp ; 45(7): e26691, 2024 May.
Article in English | MEDLINE | ID: mdl-38703114

ABSTRACT

Verbal memory decline is a significant concern following temporal lobe surgeries in patients with epilepsy, emphasizing the need for precision presurgical verbal memory mapping to optimize functional outcomes. However, the inter-individual variability in functional networks and brain function-structural dissociations pose challenges when relying solely on group-level atlases or anatomical landmarks for surgical guidance. Here, we aimed to develop and validate a personalized functional mapping technique for verbal memory using precision resting-state functional MRI (rs-fMRI) and neurosurgery. A total of 38 patients with refractory epilepsy scheduled for surgical interventions were enrolled and 28 patients were analyzed in the study. Baseline 30-min rs-fMRI scanning, verbal memory and language assessments were collected for each patient before surgery. Personalized verbal memory networks (PVMN) were delineated based on preoperative rs-fMRI data for each patient. The accuracy of PVMN was assessed by comparing post-operative functional impairments and the overlapping extent between PVMN and surgical lesions. A total of 14 out of 28 patients experienced clinically meaningful declines in verbal memory after surgery. The personalized network and the group-level atlas exhibited 100% and 75.0% accuracy in predicting postoperative verbal memory declines, respectively. Moreover, six patients with extra-temporal lesions that overlapped with PVMN showed selective impairments in verbal memory. Furthermore, the lesioned ratio of the personalized network rather than the group-level atlas was significantly correlated with postoperative declines in verbal memory (personalized networks: r = -0.39, p = .038; group-level atlas: r = -0.19, p = .332). In conclusion, our personalized functional mapping technique, using precision rs-fMRI, offers valuable insights into individual variability in the verbal memory network and holds promise in precision verbal memory network mapping in individuals.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Female , Male , Adult , Young Adult , Brain Mapping/methods , Memory Disorders/etiology , Memory Disorders/diagnostic imaging , Memory Disorders/physiopathology , Middle Aged , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Adolescent , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/surgery , Postoperative Complications/diagnostic imaging , Neurosurgical Procedures , Verbal Learning/physiology , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology
13.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38752981

ABSTRACT

Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.


Subject(s)
Depressive Disorder, Major , Executive Function , Magnetic Resonance Imaging , Multimodal Imaging , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Adolescent , Executive Function/physiology , Male , Female , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuroimaging/methods , Cognition/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Neuropsychological Tests , Brain Mapping/methods
14.
CNS Neurosci Ther ; 30(5): e14684, 2024 05.
Article in English | MEDLINE | ID: mdl-38739217

ABSTRACT

AIMS: Limited understanding exists regarding the neurobiological mechanisms underlying non-suicidal self-injury (NSSI) and suicide attempts (SA) in depressed adolescents. The maturation of brain network is crucial during adolescence, yet the abnormal alternations in depressed adolescents with NSSI or NSSI+SA remain poorly understood. METHODS: Resting-state functional magnetic resonance imaging data were collected from 114 depressed adolescents, classified into three groups: clinical control (non-self-harm), NSSI only, and NSSI+SA based on self-harm history. The alternations of resting-state functional connectivity (RSFC) were identified through support vector machine-based classification. RESULTS: Convergent alterations in NSSI and NSSI+SA predominantly centered on the inter-network RSFC between the Limbic network and the three core neurocognitive networks (SalVAttn, Control, and Default networks). Divergent alterations in the NSSI+SA group primarily focused on the Visual, Limbic, and Subcortical networks. Additionally, the severity of depressive symptoms only showed a significant correlation with altered RSFCs between Limbic and DorsAttn or Visual networks, strengthening the fact that increased depression severity alone does not fully explain observed FC alternations in the NSSI+SA group. CONCLUSION: Convergent alterations suggest a shared neurobiological mechanism along the self-destructiveness continuum. Divergent alterations may indicate biomarkers differentiating risk for SA, informing neurobiologically guided interventions.


Subject(s)
Brain , Magnetic Resonance Imaging , Self-Injurious Behavior , Suicide, Attempted , Humans , Self-Injurious Behavior/psychology , Adolescent , Male , Female , Suicide, Attempted/psychology , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Depression/psychology , Depression/physiopathology , Depression/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Child
15.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Article in English | MEDLINE | ID: mdl-38727014

ABSTRACT

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Subject(s)
Cognitive Dysfunction , Connectome , Magnetic Resonance Imaging , Nerve Net , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Male , Adult , Female , Connectome/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cohort Studies , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Young Adult , Middle Aged
16.
Hum Brain Mapp ; 45(7): e26698, 2024 May.
Article in English | MEDLINE | ID: mdl-38726908

ABSTRACT

Mediation analysis assesses whether an exposure directly produces changes in cognitive behavior or is influenced by intermediate "mediators". Electroencephalographic (EEG) spectral measurements have been previously used as effective mediators representing diverse aspects of brain function. However, it has been necessary to collapse EEG measures onto a single scalar using standard mediation methods. In this article, we overcome this limitation and examine EEG frequency-resolved functional connectivity measures as a mediator using the full EEG cross-spectral tensor (CST). Since CST samples do not exist in Euclidean space but in the Riemannian manifold of positive-definite tensors, we transform the problem, allowing for the use of classic multivariate statistics. Toward this end, we map the data from the original manifold space to the Euclidean tangent space, eliminating redundant information to conform to a "compressed CST." The resulting object is a matrix with rows corresponding to frequencies and columns to cross spectra between channels. We have developed a novel matrix mediation approach that leverages a nuclear norm regularization to determine the matrix-valued regression parameters. Furthermore, we introduced a global test for the overall CST mediation and a test to determine specific channels and frequencies driving the mediation. We validated the method through simulations and applied it to our well-studied 50+-year Barbados Nutrition Study dataset by comparing EEGs collected in school-age children (5-11 years) who were malnourished in the first year of life with those of healthy classmate controls. We hypothesized that the CST mediates the effect of malnutrition on cognitive performance. We can now explicitly pinpoint the frequencies (delta, theta, alpha, and beta bands) and regions (frontal, central, and occipital) in which functional connectivity was altered in previously malnourished children, an improvement to prior studies. Understanding the specific networks impacted by a history of postnatal malnutrition could pave the way for developing more targeted and personalized therapeutic interventions. Our methods offer a versatile framework applicable to mediation studies encompassing matrix and Hermitian 3D tensor mediators alongside scalar exposures and outcomes, facilitating comprehensive analyses across diverse research domains.


Subject(s)
Electroencephalography , Humans , Electroencephalography/methods , Child , Child, Preschool , Female , Male , Connectome/methods , Cognition/physiology , Malnutrition/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/physiology , Brain/physiopathology , Brain/diagnostic imaging , Brain/physiology , Infant
17.
Neurobiol Dis ; 196: 106521, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697575

ABSTRACT

BACKGROUND: Lesion network mapping (LNM) is a popular framework to assess clinical syndromes following brain injury. The classical approach involves embedding lesions from patients into a normative functional connectome and using the corresponding functional maps as proxies for disconnections. However, previous studies indicated limited predictive power of this approach in behavioral deficits. We hypothesized similarly low predictiveness for overall survival (OS) in glioblastoma (GBM). METHODS: A retrospective dataset of patients with GBM was included (n = 99). Lesion masks were registered in the normative space to compute disconnectivity maps. The brain functional normative connectome consisted in data from 173 healthy subjects obtained from the Human Connectome Project. A modified version of the LNM was then applied to core regions of GBM masks. Linear regression, classification, and principal component (PCA) analyses were conducted to explore the relationship between disconnectivity and OS. OS was considered both as continuous and categorical (low, intermediate, and high survival) variable. RESULTS: The results revealed no significant associations between OS and network disconnection strength when analyzed at both voxel-wise and classification levels. Moreover, patients stratified into different OS groups did not exhibit significant differences in network connectivity patterns. The spatial similarity among the first PCA of network maps for each OS group suggested a lack of distinctive network patterns associated with survival duration. CONCLUSIONS: Compared with indirect structural measures, functional indirect mapping does not provide significant predictive power for OS in patients with GBM. These findings are consistent with previous research that demonstrated the limitations of indirect functional measures in predicting clinical outcomes, underscoring the need for more comprehensive methodologies and a deeper understanding of the factors influencing clinical outcomes in this challenging disease.


Subject(s)
Brain Neoplasms , Connectome , Glioblastoma , Magnetic Resonance Imaging , Humans , Glioblastoma/mortality , Glioblastoma/diagnostic imaging , Glioblastoma/physiopathology , Male , Female , Brain Neoplasms/physiopathology , Brain Neoplasms/mortality , Brain Neoplasms/diagnostic imaging , Middle Aged , Connectome/methods , Retrospective Studies , Adult , Aged , Magnetic Resonance Imaging/methods , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
18.
PLoS One ; 19(5): e0293053, 2024.
Article in English | MEDLINE | ID: mdl-38768123

ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.


Subject(s)
Alzheimer Disease , Machine Learning , Magnetic Resonance Imaging , Schizophrenia , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Male , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Connectome/methods , Rest/physiology , Case-Control Studies
19.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38781106

ABSTRACT

The brain is a complex network, and diseases can alter its structures and connections between regions. Therefore, we can try to formalize the action of diseases by using operators acting on the brain network. Here, we propose a conceptual model of the brain, seen as a multilayer network, whose intra-lobe interactions are formalized as the diagonal blocks of an adjacency matrix. We propose a general and abstract definition of disease as an operator altering the weights of the connections between neural agglomerates, that is, the elements of the brain matrix. As models, we consider examples from three neurological disorders: epilepsy, Alzheimer-Perusini's disease, and schizophrenia. The alteration of neural connections can be seen as alterations of communication pathways, and thus, they can be described with a new channel model.


Subject(s)
Brain , Models, Neurological , Nerve Net , Humans , Brain/physiopathology , Nerve Net/physiopathology , Nervous System Diseases/physiopathology , Epilepsy/physiopathology , Schizophrenia/physiopathology , Alzheimer Disease/physiopathology
20.
Sci Rep ; 14(1): 11682, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778225

ABSTRACT

To explore altered patterns of static and dynamic functional brain network connectivity (sFNC and dFNC) in Primary angle-closure glaucoma (PACG) patients. Clinically confirmed 34 PACG patients and 33 age- and gender-matched healthy controls (HCs) underwent evaluation using T1 anatomical and functional MRI on a 3 T scanner. Independent component analysis, sliding window, and the K-means clustering method were employed to investigate the functional network connectivity (FNC) and temporal metrics based on eight resting-state networks. Differences in FNC and temporal metrics were identified and subsequently correlated with clinical variables. For sFNC, compared with HCs, PACG patients showed three decreased interactions, including SMN-AN, SMN-VN and VN-AN pairs. For dFNC, we derived four highly structured states of FC that occurred repeatedly between individual scans and subjects, and the results are highly congruent with sFNC. In addition, PACG patients had a decreased fraction of time in state 3 and negatively correlated with IOP (p < 0.05). PACG patients exhibit abnormalities in both sFNC and dFNC. The high degree of overlap between static and dynamic results suggests the stability of functional connectivity networks in PACG patients, which provide a new perspective to understand the neuropathological mechanisms of optic nerve damage in PACG patients.


Subject(s)
Glaucoma, Angle-Closure , Magnetic Resonance Imaging , Humans , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/diagnostic imaging , Female , Male , Middle Aged , Aged , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Case-Control Studies , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...