Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.749
Filter
1.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830884

ABSTRACT

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Animals , Rabbits , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Sciatic Nerve/physiology , Facial Nerve/physiology , Peripheral Nerves/physiology , Male , Rats , Silicon/chemistry , Rats, Sprague-Dawley , Electric Stimulation
2.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824568

ABSTRACT

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Subject(s)
Adipose Tissue , Chitosan , Mesenchymal Stem Cells , Microspheres , Nerve Regeneration , Rats, Sprague-Dawley , Chitosan/chemistry , Nerve Regeneration/physiology , Animals , Rats , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Sciatic Nerve/physiology , Porosity , Tissue Scaffolds/chemistry , Male , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Cells, Cultured
3.
Handb Clin Neurol ; 201: 1-17, 2024.
Article in English | MEDLINE | ID: mdl-38697733

ABSTRACT

Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Humans , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/physiopathology , Animals , Peripheral Nerves , Axons/physiology , Axons/pathology
4.
Cell Stem Cell ; 31(5): 585-586, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701752

ABSTRACT

Stem cell therapy has emerged as a promising area of scientific investigation, sparking considerable interest, especially in spinal cord injury (SCI). Sun et al.1 discover that the extracellular matrix (ECM) from the neonatal spinal cord transmits biochemical signals to endogenous axons, thus promoting axonal regeneration.


Subject(s)
Spinal Cord Injuries , Spinal Cord , Humans , Spinal Cord Injuries/therapy , Animals , Infant, Newborn , Extracellular Matrix/metabolism , Adult , Nerve Regeneration
5.
Invest Ophthalmol Vis Sci ; 65(5): 3, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691090

ABSTRACT

Purpose: Forty-hertz light flicker stimulation has been proven to reduce neurodegeneration, but its effect on optic nerve regeneration is unclear. This study explores the effect of 40-Hz light flicker in promoting optic nerve regeneration in zebrafish and investigates the underlying mechanisms. Methods: Wild-type and mpeg1:EGFP zebrafish were used to establish a model of optic nerve crush. Biocytin tracing and hematoxylin and eosin staining were employed to observe whether 40-Hz light flicker promotes regeneration of retinal ganglion cell axons and dendrites. Optomotor and optokinetic responses were evaluated to assess recovery of visual function. Immunofluorescence staining of mpeg1:EGFP zebrafish was performed to observe changes in microglia. Differentially expressed genes that promote optic nerve regeneration following 40-Hz light flicker stimulation were identified and validated through RNA-sequencing analysis and quantitative real-time PCR (qRT-PCR). Results: Zebrafish exhibited spontaneous optic nerve regeneration after optic nerve injury and restored visual function. We observed that 40-Hz light flicker significantly activated microglia following optic nerve injury and promoted regeneration of retinal ganglion cell axons and dendrites, as well as recovery of visual function. Transcriptomics and qRT-PCR analyses revealed that 40-Hz light flicker increased the expression of genes associated with neuronal plasticity, including bdnf, npas4a, fosab, fosb, egr4, and ier2a. Conclusions: To our knowledge, this study is the first to demonstrate that 40-Hz light flicker stimulation promotes regeneration of retinal ganglion cell axons and dendrites and recovery of visual function in zebrafish, which is associated with microglial activation and enhancement of neural plasticity.


Subject(s)
Microglia , Nerve Regeneration , Neuronal Plasticity , Optic Nerve Injuries , Retinal Ganglion Cells , Zebrafish , Animals , Microglia/physiology , Nerve Regeneration/physiology , Optic Nerve Injuries/physiopathology , Neuronal Plasticity/physiology , Retinal Ganglion Cells/physiology , Photic Stimulation , Disease Models, Animal , Optic Nerve/physiology , Axons/physiology , Real-Time Polymerase Chain Reaction
6.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700874

ABSTRACT

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
7.
Article in English | MEDLINE | ID: mdl-38740385

ABSTRACT

Nervous system injuries, encompassing peripheral nerve injury (PNI), spinal cord injury (SCI), and traumatic brain injury (TBI), present significant challenges to patients' wellbeing. Traditional treatment approaches have limitations in addressing the complexity of neural tissue regeneration and require innovative solutions. Among emerging strategies, implantable materials, particularly electrospun drug-loaded scaffolds, have gained attention for their potential to simultaneously provide structural support and controlled release of therapeutic agents. This review provides a thorough exploration of recent developments in the design and application of electrospun drug-loaded scaffolds for nervous system repair. The electrospinning process offers precise control over scaffold characteristics, including mechanical properties, biocompatibility, and topography, crucial for creating a conducive environment for neural tissue regeneration. The large surface area of the resulting fibrous networks enhances biomolecule attachment, influencing cellular behaviors such as adhesion, proliferation, and migration. Polymeric electrospun materials demonstrate versatility in accommodating a spectrum of therapeutics, from small molecules to proteins. This enables tailored interventions to accelerate neuroregeneration and mitigate inflammation at the injury site. A critical aspect of this review is the examination of the interplay between structural properties and pharmacological effects, emphasizing the importance of optimizing both aspects for enhanced therapeutic outcomes. Drawing upon the latest advancements in the field, we discuss the promising outcomes of preclinical studies using electrospun drug-loaded scaffolds for nervous system repair, as well as future perspectives and considerations for their design and implementation. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nerve Regeneration , Tissue Scaffolds , Humans , Animals , Tissue Scaffolds/chemistry , Nerve Regeneration/drug effects , Tissue Engineering , Drug Delivery Systems
8.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
9.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752248

ABSTRACT

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Subject(s)
Nerve Regeneration , Oxidative Stress , Rats, Sprague-Dawley , Schwann Cells , Sciatic Nerve , Selenium , Selenocysteine , Animals , Nerve Regeneration/drug effects , Rats , Male , Selenocysteine/analogs & derivatives , Selenocysteine/pharmacology , Schwann Cells/metabolism , Schwann Cells/drug effects , Oxidative Stress/drug effects , Sciatic Nerve/drug effects , Selenium/pharmacology , Cell Proliferation/drug effects , Peripheral Nerve Injuries/metabolism
10.
Nat Commun ; 15(1): 4400, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782898

ABSTRACT

Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. There is a lack of evidence on the mechanism of pathogenesis and rationales for treatment. We used a female C3H/HeN mouse model that recapitulates key clinical manifestations to study how infection dynamics shape DCD pathology and the impact of treatment with the front-line, anti-parasitic drug benznidazole. Curative treatment 6 weeks post-infection resulted in sustained recovery of gastrointestinal transit function, whereas treatment failure led to infection relapse and gradual return of DCD symptoms. Neuro/immune gene expression patterns shifted from chronic inflammation to a tissue repair profile after cure, accompanied by increased cellular proliferation, glial cell marker expression and recovery of neuronal density in the myenteric plexus. Delaying treatment until 24 weeks post-infection led to partial reversal of DCD, suggesting the accumulation of permanent tissue damage over the course of chronic infection. Our study shows that murine DCD pathogenesis is sustained by chronic T. cruzi infection and is not an inevitable consequence of acute stage denervation. The risk of irreversible enteric neuromuscular tissue damage and dysfunction developing highlights the importance of prompt diagnosis and treatment. These findings support the concept of treating asymptomatic, T. cruzi-infected individuals with benznidazole to prevent DCD development.


Subject(s)
Chagas Disease , Disease Models, Animal , Enteric Nervous System , Mice, Inbred C3H , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Female , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Trypanosoma cruzi/drug effects , Mice , Enteric Nervous System/drug effects , Nerve Regeneration/drug effects
11.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767361

ABSTRACT

Schwann cells (SCs) are myelinating cells of the peripheral nervous system, playing a crucial role in peripheral nerve regeneration. Nanosecond Pulse Electric Field (nsPEF) is an emerging method applicable in nerve electrical stimulation that has been demonstrated to be effective in stimulating cell proliferation and other biological processes. Aiming to assess whether SCs undergo significant changes under nsPEF and help explore the potential for new peripheral nerve regeneration methods, cultured RSC96 cells were subjected to nsPEF stimulation at 5 kV and 10 kV, followed by continued cultivation for 3-4 days. Subsequently, some relevant factors expressed by SCs were assessed to demonstrate the successful stimulation, including the specific marker protein, neurotrophic factor, transcription factor, and myelination regulator. The representative results showed that nsPEF significantly enhanced the proliferation and migration of SCs and the ability to synthesize relevant factors that contribute positively to the regeneration of peripheral nerves. Simultaneously, lower expression of GFAP indicated the benign prognosis of peripheral nerve injuries. All these outcomes show that nsPEF has great potential as an efficient treatment method for peripheral nerve injuries by stimulating SCs.


Subject(s)
Nerve Regeneration , Schwann Cells , Schwann Cells/cytology , Schwann Cells/physiology , Nerve Regeneration/physiology , Animals , Rats , Peripheral Nerves/physiology , Peripheral Nerves/cytology , Cell Proliferation/physiology , Electric Stimulation/methods , Peripheral Nerve Injuries/therapy
12.
ACS Nano ; 18(20): 13333-13345, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717602

ABSTRACT

A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO2) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO2, the resulting mSiO2&PMO-CeO2-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Porosity , Silicon Dioxide/chemistry , Paclitaxel/pharmacology , Paclitaxel/chemistry , Anisotropy , Nerve Regeneration/drug effects , Hydrophobic and Hydrophilic Interactions , Apoptosis/drug effects , Rats , Nanostructures/chemistry , Mice , Particle Size , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology
13.
Mol Pain ; 20: 17448069241256466, 2024.
Article in English | MEDLINE | ID: mdl-38716504

ABSTRACT

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Subject(s)
Myeloid Differentiation Factor 88 , Nerve Regeneration , Neuralgia , Proanthocyanidins , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Proanthocyanidins/pharmacology , Toll-Like Receptor 4/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Myeloid Differentiation Factor 88/metabolism , Nerve Regeneration/drug effects , Signal Transduction/drug effects , Male , Grape Seed Extract/pharmacology , Rats , Microglia/drug effects , Microglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Spinal Nerves/drug effects
14.
Article in English | MEDLINE | ID: mdl-38723788

ABSTRACT

The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Subject(s)
Extracellular Matrix , Regenerative Medicine , Humans , Extracellular Matrix/metabolism , Animals , Tissue Engineering , Central Nervous System , Nerve Regeneration
15.
Neurosci Lett ; 833: 137813, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723761

ABSTRACT

A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.


Subject(s)
Exosomes , Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Rats, Sprague-Dawley , Schwann Cells , Animals , Schwann Cells/metabolism , Exosomes/metabolism , Macrophages/metabolism , Peripheral Nerve Injuries/metabolism , Rats , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Receptor, ErbB-2/metabolism , Male , Ubiquitination , Mice , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Mice, Inbred C57BL , Lipopolysaccharides
16.
Int Immunopharmacol ; 134: 112188, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728880

ABSTRACT

Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3ß and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3ß signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.


Subject(s)
Glycogen Synthase Kinase 3 beta , Macrophages , Microglia , NF-kappa B , Nerve Regeneration , Recovery of Function , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Animals , Microglia/drug effects , Microglia/metabolism , Macrophages/drug effects , Macrophages/immunology , Nerve Regeneration/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , NF-kappa B/metabolism , Recombinant Proteins/therapeutic use , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Axons/metabolism , Axons/drug effects , Axons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phenotype , Rats , Humans , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
17.
Biomed Pharmacother ; 175: 116645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729050

ABSTRACT

Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Schwann Cells , Schwann Cells/physiology , Humans , Animals , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Cell- and Tissue-Based Therapy/methods , Peripheral Nerves/physiology
18.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792144

ABSTRACT

Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns. Therefore, curcumin, a bioactive phytochemical, has emerged as a promising alternative bioactive agent due to its ability to enhance PNR and overcome said challenges. However, its hydrophobicity and rapid degradation in aqueous solutions are considerable limitations. In this work, a nanoscale delivery platform with tannic acid (TA) and polyvinylpyrrolidone (PVP) was developed to encapsulate curcumin for increased colloidal and chemical stability. The curcumin nanoparticles (CurNPs) demonstrate significantly improved stability in water, reduced degradation rates, and controlled release kinetics when compared to free curcumin. Further, cell studies show that the CurNP is biocompatible when introduced to neuronal cells (SH-SY5Y), rat Schwann cells (RSC-S16), and murine macrophages (J774 A.1) at 5 µM, 5 µM, and 10 µM of curcumin, respectively. As a result of these improved physicochemical properties, confocal fluorescence microscopy revealed superior delivery of curcumin into these cells when in the form of CurNPs compared to its free form. A hydrogen peroxide-based oxidative stress study also demonstrated the CurNP's potential to protect J774 A.1 cells against excessive oxidative stress. Overall, this study provides evidence for the suitability of CurNPs to be used as a bioactive agent in NC applications.


Subject(s)
Curcumin , Nanoparticles , Curcumin/pharmacology , Curcumin/chemistry , Animals , Rats , Nanoparticles/chemistry , Mice , Humans , Drug Delivery Systems , Nerve Regeneration/drug effects , Polymers/chemistry , Schwann Cells/drug effects , Drug Liberation , Tannins/chemistry , Tannins/pharmacology , Cell Line , Oxidative Stress/drug effects , Povidone/chemistry
19.
Sci Rep ; 14(1): 11946, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38789574

ABSTRACT

Spinal cord injury (SCI) leads to motor and sensory impairment below the site of injury, thereby necessitating rehabilitation. An enriched environment (EE) increases social interaction and locomotor activity in a mouse model, similar to human rehabilitation. However, the impact of EE on presynaptic plasticity in gene expression levels remains unclear. Hence, this study aimed to investigate the therapeutic potential of EE in an SCI mouse model. Mice with spinal cord contusion were divided into two groups: those housed in standard cages (control) and those in EE conditions (EE). Each group was housed separately for either 2- or 8-weeks post-injury, after which RNA sequencing was performed and compared to a sham group (receiving only a dorsal laminectomy). The synaptic vesicle cycle (SVC) pathway and related genes showed significant downregulation after SCI at both time points. Subsequently, we investigated whether exposure to EE for 2- and 8-weeks post-SCI could modulate the SVC pathway and its related genes. Notably, exposure to EE for 8 weeks resulted in a marked reversal effect of SVC-related gene expression, along with stimulation of axon regeneration and mitigation of locomotor activity loss. Thus, prolonged exposure to EE increased presynaptic activity, fostering axon regeneration and functional improvement by modulating the SVC in the SCI mouse model. These findings suggest that EE exposure proves effective in inducing activity-dependent plasticity, offering a promising therapeutic approach akin to rehabilitation training in patients with SCI.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries , Synaptic Vesicles , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/metabolism , Mice , Synaptic Vesicles/metabolism , Locomotion , Female , Neuronal Plasticity , Environment , Recovery of Function , Mice, Inbred C57BL , Nerve Regeneration
20.
Phytomedicine ; 129: 155641, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718639

ABSTRACT

BACKGROUND: The limited regenerative capacity of injured axons hinders functional recovery after nerve injury. Although no drugs are currently available in the clinic to accelerate axon regeneration, recent studies show the potential of vasohibin inhibition by parthenolide, produced in Tanacetum parthenium, to accelerate axon regeneration. However, due to its poor oral bioavailability, parthenolide is limited to parenteral administration. PURPOSE: This study investigates another sesquiterpene lactone, cnicin, produced in Cnicus benedictus for promoting axon regeneration. RESULTS: Cnicin is equally potent and effective in facilitating nerve regeneration as parthenolide. In culture, cnicin promotes axon growth of sensory and CNS neurons from various species, including humans. Neuronal overexpression of vasohibin increases the effective concentrations comparable to parthenolide, suggesting an interaction between cnicin and vasohibin. Remarkably, intravenous administration of cnicin significantly accelerates functional recovery after severe nerve injury in various species, including the anastomosis of severed nerves. Pharmacokinetic analysis of intravenously applied cnicin shows a blood half-life of 12.7 min and an oral bioavailability of 84.7 % in rats. Oral drug administration promotes axon regeneration and recovery after nerve injury in mice. CONCLUSION: These results highlight the potential of cnicin as a promising drug to treat axonal insults and improve recovery.


Subject(s)
Nerve Regeneration , Rats, Sprague-Dawley , Sesquiterpenes , Animals , Nerve Regeneration/drug effects , Sesquiterpenes/pharmacology , Mice , Male , Humans , Rats , Axons/drug effects , Axons/physiology , Cell Cycle Proteins/metabolism , Lactones/pharmacology , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL
...