Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94.659
Filter
2.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38828908

ABSTRACT

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Developmental , Limb Buds , T-Box Domain Proteins , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Limb Buds/metabolism , Limb Buds/embryology , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Up-Regulation/genetics , Body Patterning/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mesoderm/metabolism , Mesoderm/embryology
3.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200225, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838283

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients with ongoing seizures are usually not allowed to drive. The prognosis for seizure freedom is favorable in patients with autoimmune encephalitis (AIE) with antibodies against NMDA receptor (NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and the gamma-aminobutyric-acid B receptor (GABABR). We hypothesized that after a seizure-free period of 3 months, patients with AIE have a seizure recurrence risk of <20% during the subsequent 12 months. This would render them eligible for noncommercial driving according to driving regulations in several countries. METHODS: This retrospective multicenter cohort study analyzed follow-up data from patients aged 15 years or older with seizures resulting from NMDAR-, LGI1-, CASPR2-, or GABABR-AIE, who had been seizure-free for ≥3 months. We used Kaplan-Meier (KM) estimates for the seizure recurrence risk at 12 months for each antibody group and tested for the effects of potential covariates with regression models. RESULTS: We included 383 patients with NMDAR-, 440 with LGI1-, 114 with CASPR2-, and 44 with GABABR-AIE from 14 international centers. After being seizure-free for 3 months after an initial seizure period, we calculated the probability of remaining seizure-free for another 12 months (KM estimate) as 0.89 (95% confidence interval [CI] 0.85-0.92) for NMDAR, 0.84 (CI 0.80-0.88) for LGI1, 0.82 (CI 0.75-0.90) for CASPR2, and 0.76 (CI 0.62-0.93) for GABABR. DISCUSSION: Taking a <20% recurrence risk within 12 months as sufficient, patients with NMDAR-AIE and LGI1-AIE could be considered eligible for noncommercial driving after having been seizure-free for 3 months.


Subject(s)
Autoantibodies , Encephalitis , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Nerve Tissue Proteins , Receptors, GABA-B , Recurrence , Humans , Female , Male , Adult , Intracellular Signaling Peptides and Proteins/immunology , Autoantibodies/blood , Middle Aged , Encephalitis/immunology , Retrospective Studies , Receptors, GABA-B/immunology , Nerve Tissue Proteins/immunology , Young Adult , Membrane Proteins/immunology , Receptors, N-Methyl-D-Aspartate/immunology , Seizures/etiology , Seizures/immunology , Hashimoto Disease/immunology , Hashimoto Disease/blood , Aged , Adolescent , Follow-Up Studies , Proteins/immunology , Cohort Studies
4.
Front Immunol ; 15: 1371831, 2024.
Article in English | MEDLINE | ID: mdl-38840910

ABSTRACT

Introduction: Lung cancer, with the highest global mortality rate among cancers, presents a grim prognosis, often diagnosed at an advanced stage in nearly 70% of cases. Recent research has unveiled a novel mechanism of cell death termed disulfidptosis, which is facilitated by glucose scarcity and the protein SLC7A11. Methods: Utilizing the least absolute shrinkage and selection operator (LASSO) regression analysis combined with Cox regression analysis, we constructed a prognostic model focusing on disulfidptosis-related genes. Nomograms, correlation analyses, and enrichment analyses were employed to assess the significance of this model. Among the genes incorporated into the model, CHRNA5 was selected for further investigation regarding its role in LUAD cells. Biological functions of CHRNA5 were assessed using EdU, transwell, and CCK-8 assays. Results: The efficacy of the model was validated through internal testing and an external validation set, with further evaluation of its robustness and clinical applicability using a nomogram. Subsequent correlation analyses revealed associations between the risk score and infiltration of various cancer types, as well as oncogene expression. Enrichment analysis also identified associations between the risk score and pivotal biological processes and KEGG pathways. Our findings underscore the significant impact of CHRNA5 on LUAD cell proliferation, migration, and disulfidptosis. Conclusion: This study successfully developed and validated a robust prognostic model centered on disulfidptosis-related genes, providing a foundation for predicting prognosis in LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Nomograms , Receptors, Nicotinic , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Receptors, Nicotinic/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Cell Line, Tumor , Male , Cell Proliferation/genetics , Female
5.
PLoS One ; 19(6): e0298965, 2024.
Article in English | MEDLINE | ID: mdl-38829854

ABSTRACT

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Subject(s)
Alternative Splicing , Chromatin , Dysautonomia, Familial , Exons , RNA Polymerase II , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Dysautonomia, Familial/genetics , Dysautonomia, Familial/metabolism , Humans , Exons/genetics , Animals , Chromatin/metabolism , Chromatin/genetics , Mice , HEK293 Cells , Histones/metabolism , Mice, Transgenic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Kinetics , RNA Splicing , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
6.
Commun Biol ; 7(1): 549, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724689

ABSTRACT

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Subject(s)
Actins , Adaptor Proteins, Signal Transducing , Nerve Tissue Proteins , Pseudopodia , Tumor Suppressor Proteins , Pseudopodia/metabolism , Actins/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Membrane/metabolism , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
7.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700874

ABSTRACT

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
8.
Nihon Yakurigaku Zasshi ; 159(3): 165-168, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692881

ABSTRACT

Molecular oxygen suffices the ATP production required for the survival of us aerobic organisms. But it is also true that oxygen acts as a source of reactive oxygen species that elicit a spectrum of damages in living organisms. To cope with such intrinsic ambiguity of biological activity oxygen exerts, aerobic mechanisms are equipped with an exquisite adaptive system, which sensitively detects partial pressure of oxygen within the body and controls appropriate oxygen supply to the tissues. Physiological responses to hypoxia are comprised of the acute and chronic phases, in the former of which the oxygen-sensing remains controversial particularly from mechanistic points of view. Recently, we have revealed that the prominently redox-sensitive cation channel TRPA1 plays key roles in oxygen-sensing mechanisms identified in the peripheral tissues and the central nervous system. In this review, we summarize recent development of researches on oxygen-sensing mechanisms including that in the carotid body, which has been recognized as the oxygen receptor organ central to acute oxygen-sensing. We also discuss how ubiquitously the TRPA1 contributes to the mechanisms underlying the acute phase of adaptation to hypoxia.


Subject(s)
Oxygen , TRPA1 Cation Channel , Transient Receptor Potential Channels , TRPA1 Cation Channel/metabolism , Humans , Oxygen/metabolism , Animals , Transient Receptor Potential Channels/metabolism , Hypoxia/metabolism , Calcium Channels/metabolism , Nerve Tissue Proteins/metabolism , Reactive Oxygen Species/metabolism , Carotid Body/metabolism
9.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696595

ABSTRACT

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Subject(s)
Dorsolateral Prefrontal Cortex , Proteomics , Humans , Child , Male , Female , Adult , Dorsolateral Prefrontal Cortex/metabolism , Child, Preschool , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Synapses/metabolism , Adolescent , Young Adult , Autistic Disorder/metabolism , Autistic Disorder/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Synaptosomes/metabolism , Prefrontal Cortex/metabolism , Post-Synaptic Density/metabolism
10.
Cell Mol Life Sci ; 81(1): 209, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710967

ABSTRACT

As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.


Subject(s)
Membrane Proteins , Mutation , Nerve Tissue Proteins , Neurodegenerative Diseases , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Animals , Lysosomes/metabolism , Lysosomes/genetics , Amyloid/metabolism , Amyloid/genetics , Amyloid/chemistry
11.
Proc Natl Acad Sci U S A ; 121(23): e2318740121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805275

ABSTRACT

Repressor element-1 silencing transcription factor (REST) is required for the formation of mature neurons. REST dysregulation underlies a key mechanism of neurodegeneration associated with neurological disorders. However, the mechanisms leading to alterations of REST-mediated silencing of key neurogenesis genes are not known. Here, we show that BRCA1 Associated ATM Activator 1 (BRAT1), a gene linked to neurodegenerative diseases, is required for the activation of REST-responsive genes during neuronal differentiation. We find that INTS11 and INTS9 subunits of Integrator complex interact with BRAT1 as a distinct trimeric complex to activate critical neuronal genes during differentiation. BRAT1 depletion results in persistence of REST residence on critical neuronal genes disrupting the differentiation of NT2 cells into astrocytes and neuronal cells. We identified BRAT1 and INTS11 co-occupying the promoter region of these genes and pinpoint a role for BRAT1 in recruiting INTS11 to their promoters. Disease-causing mutations in BRAT1 diminish its association with INTS11/INTS9, linking the manifestation of disease phenotypes with a defect in transcriptional activation of key neuronal genes by BRAT1/INTS11/INTS9 complex. Finally, loss of Brat1 in mouse embryonic stem cells leads to a defect in neuronal differentiation assay. Importantly, while reconstitution with wild-type BRAT1 restores neuronal differentiation, the addition of a BRAT1 mutant is unable to associate with INTS11/INTS9 and fails to rescue the neuronal phenotype. Taken together, our study highlights the importance of BRAT1 association with INTS11 and INTS9 in the development of the nervous system.


Subject(s)
Cell Differentiation , Chromatin , Neurogenesis , Neurons , Repressor Proteins , Chromatin/metabolism , Chromatin/genetics , Neurons/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Humans , Neurogenesis/genetics , Animals , Mice , Promoter Regions, Genetic , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Nerve Tissue Proteins , Co-Repressor Proteins
12.
Front Immunol ; 15: 1399459, 2024.
Article in English | MEDLINE | ID: mdl-38812508

ABSTRACT

Initiation of the bradykinin generation cascade is responsible for the occurrence of attacks in some types of angioedema without wheals. Hereditary angioedema due to C1 inhibitor deficiency (HAE-C1-INH) is one such clinical entity. In this paper, we explore the existing evidence that mast cells (MCs) degranulation may contribute to the activation of the kallikrein-kinin system cascade, followed by bradykinin formation and angioedema. We present the multidirectional effects of MC-derived heparin and other polyanions on the major components of the kinin-kallikrein system, particularly on the factor XII activation. Although, bradykinin- and histamine-mediated symptoms are distinct clinical phenomena, they share some common features, such as some similar triggers and a predilection to occur at sites where mast cells reside, namely the skin and mucous membranes. In addition, recent observations indicate a high incidence of hypersensitivity reactions associated with MC degranulation in the HAE-C1-INH patient population. However, not all of these can be explained by IgE-dependent mechanisms. Mast cell-related G protein-coupled receptor-X2 (MRGPRX2), which has recently attracted scientific interest, may be involved in the activation of MCs through a different pathway. Therefore, we reviewed MRGPRX2 ligands that HAE-C1-INH patients may be exposed to in their daily lives and that may affect MCs degranulation. We also discussed the known inter- and intra-individual variability in the course of HAE-C1-INH in relation to factors responsible for possible variability in the strength of the response to MRGPRX2 receptor stimulation. The above issues raise several questions for future research. It is not known to what extent a prophylactic or therapeutic intervention targeting the pathways of one mechanism (mast cell degranulation) may affect the other (bradykinin production), or whether the number of mast cells at a specific body site and their reactivity to triggers such as pressure, allergens or MRGPRX2 agonists may influence the occurrence of HAE-C1-INH attacks at that site.


Subject(s)
Bradykinin , Cell Degranulation , Mast Cells , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Humans , Mast Cells/immunology , Mast Cells/metabolism , Bradykinin/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Angioedema/metabolism , Angioedema/immunology , Angioedema/etiology , Nerve Tissue Proteins/metabolism , Kallikrein-Kinin System/physiology
13.
BMC Cancer ; 24(1): 645, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802745

ABSTRACT

BACKGROUND: Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS: Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS: For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS: Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.


Subject(s)
Cell Proliferation , Gene Knockout Techniques , Ovarian Neoplasms , Proteomics , Ribosomes , Humans , Ribosomes/metabolism , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Proteomics/methods , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Neoplastic , Proteome/metabolism , Multiomics
14.
Sci Immunol ; 9(95): eadi7418, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758807

ABSTRACT

Immune checkpoint blockade is a promising approach to activate antitumor immunity and improve the survival of patients with cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is an immune checkpoint target; however, the downstream signaling mechanisms are elusive. Here, we identify leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) as a VISTA binding partner, which acts as an inhibitory receptor by engaging VISTA and suppressing T cell receptor signaling pathways. Mice with T cell-specific LRIG1 deletion developed superior antitumor responses because of expansion of tumor-specific cytotoxic T lymphocytes (CTLs) with increased effector function and survival. Sustained tumor control was associated with a reduction of quiescent CTLs (TCF1+ CD62Lhi PD-1low) and a reciprocal increase in progenitor and memory-like CTLs (TCF1+ PD-1+). In patients with melanoma, elevated LRIG1 expression on tumor-infiltrating CD8+ CTLs correlated with resistance to immunotherapies. These results delineate the role of LRIG1 as an inhibitory immune checkpoint receptor and propose a rationale for targeting the VISTA/LRIG1 axis for cancer immunotherapy.


Subject(s)
B7 Antigens , CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Mice, Inbred C57BL , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/genetics , Humans , B7 Antigens/immunology , B7 Antigens/genetics , Mice, Knockout , Cell Line, Tumor , Female , Membrane Proteins , Nerve Tissue Proteins
15.
Zool Res ; 45(3): 663-678, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766748

ABSTRACT

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Subject(s)
Animals, Newborn , Cognitive Dysfunction , Proteome , Sevoflurane , Social Behavior , Animals , Sevoflurane/adverse effects , Mice , Cognitive Dysfunction/chemically induced , Ribosomes/drug effects , Ribosomes/metabolism , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Nerve Tissue Proteins/metabolism , Male , Behavior, Animal/drug effects
16.
Sci Rep ; 14(1): 10187, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702381

ABSTRACT

Neurexins (Nrxns) are critical for synapse organization and their mutations have been documented in autism spectrum disorder, schizophrenia, and epilepsy. We recently reported that conditional deletion of Nrxn2, under the control of Emx1Cre promoter, predominately expressed in the neocortex and hippocampus (Emx1-Nrxn2 cKO mice) induced stereotyped patterns of behavior in mice, suggesting behavioral inflexibility. In this study, we investigated the effects of Nrxn2 deletion through two different conditional approaches targeting presynaptic cortical neurons projecting to dorsomedial striatum on the flexibility between goal-directed and habitual actions in response to devaluation of action-outcome (A-O) contingencies in an instrumental learning paradigm or upon reversal of A-O contingencies in a water T-maze paradigm. Nrxn2 deletion through both the conditional approaches induced an inability of mice to discriminate between goal-directed and habitual action strategies in their response to devaluation of A-O contingency. Emx1-Nrxn2 cKO mice exhibited reversal learning deficits, indicating their inability to adopt new action strategies. Overall, our studies showed that Nrxn2 deletion through two distinct conditional deletion approaches impaired flexibility in response to alterations in A-O contingencies. These investigations can lay the foundation for identification of novel genetic factors underlying behavioral inflexibility.


Subject(s)
Behavior, Animal , Mice, Knockout , Nerve Tissue Proteins , Transcription Factors , Animals , Mice , Nerve Tissue Proteins/genetics , Male , Neural Cell Adhesion Molecules/genetics , Gene Deletion , Maze Learning/physiology , Reversal Learning/physiology , Homeodomain Proteins/genetics , Hippocampus/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Conditioning, Operant
17.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718567

ABSTRACT

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Pulpitis , Animals , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mice , Male , Pulpitis/metabolism , Pulpitis/pathology , Trigeminal Ganglion/metabolism , Neurons/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Disease Models, Animal , Intercellular Signaling Peptides and Proteins
18.
PLoS One ; 19(5): e0299380, 2024.
Article in English | MEDLINE | ID: mdl-38748694

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental behavioral disorder characterized by social, communicative, and motor deficits. There is no single etiological cause for ASD, rather, there are various genetic and environmental factors that increase the risk for ASD. It is thought that some of these factors influence the same underlying neural mechanisms, and that an interplay of both genetic and environmental factors would better explain the pathogenesis of ASD. To better appreciate the influence of genetic-environment interaction on ASD-related behaviours, rats lacking a functional copy of the ASD-linked gene Cntnap2 were exposed to maternal immune activation (MIA) during pregnancy and assessed in adolescence and adulthood. We hypothesized that Cntnap2 deficiency interacts with poly I:C MIA to aggravate ASD-like symptoms in the offspring. In this double-hit model, we assessed attention, a core deficit in ASD due to prefrontal cortical dysfunction. We employed a well-established attentional paradigm known as the 5-choice serial reaction time task (5CSRTT). Cntnap2-/- rats exhibited greater perseverative responses which is indicative of repetitive behaviors. Additionally, rats exposed to poly I:C MIA exhibited premature responses, a marker of impulsivity. The rats exposed to both the genetic and environmental challenge displayed an increase in impulsive activity; however, this response was only elicited in the presence of an auditory distractor. This implies that exacerbated symptomatology in the double-hit model may situation-dependent and not generally expressed.


Subject(s)
Attention , Autism Spectrum Disorder , Disease Models, Animal , Gene-Environment Interaction , Nerve Tissue Proteins , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/etiology , Rats , Female , Attention/physiology , Pregnancy , Nerve Tissue Proteins/genetics , Male , Membrane Proteins/genetics , Poly I-C , Behavior, Animal , Prenatal Exposure Delayed Effects/genetics
19.
ACS Chem Neurosci ; 15(10): 2018-2027, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701380

ABSTRACT

In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π-π, and cation-π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation-π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π-π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.


Subject(s)
Membrane Glycoproteins , Molecular Dynamics Simulation , Nerve Tissue Proteins , Protein Isoforms , Ligands , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/chemistry , Humans , Hydrogen Bonding , Protein Binding/physiology , Molecular Docking Simulation/methods , Synaptic Vesicles/metabolism
20.
PLoS Biol ; 22(5): e3002599, 2024 May.
Article in English | MEDLINE | ID: mdl-38713721

ABSTRACT

Synaptic adhesion molecules (SAMs) are evolutionarily conserved proteins that play an important role in the form and function of neuronal synapses. Teneurins (Tenms) and latrophilins (Lphns) are well-known cell adhesion molecules that form a transsynaptic complex. Recent studies suggest that Tenm3 and Lphn2 (gene symbol Adgrl2) are involved in hippocampal circuit assembly via their topographical expression. However, it is not known whether other teneurins and latrophilins display similar topographically restricted expression patterns during embryonic and postnatal development. Here, we reveal the cartography of all teneurin (Tenm1-4) and latrophilin (Lphn1-3 [Adgrl1-3]) paralog expression in the mouse hippocampus across prenatal and postnatal development as monitored by large-scale single-molecule RNA in situ hybridization mapping. Our results identify a striking heterogeneity in teneurin and latrophilin expression along the spatiotemporal axis of the hippocampus. Tenm2 and Tenm4 expression levels peak at the neonatal stage when compared to Tenm1 and Tenm3, while Tenm1 expression is restricted to the postnatal pyramidal cell layer. Tenm4 expression in the dentate gyrus (DG) exhibits an opposing topographical expression pattern in the embryonic and neonatal hippocampus. Our findings were validated by analyses of multiple RNA-seq datasets at bulk, single-cell, and spatial levels. Thus, our study presents a comprehensive spatiotemporal map of Tenm and Lphn expression in the hippocampus, showcasing their diverse expression patterns across developmental stages in distinct spatial axes.


Subject(s)
Gene Expression Regulation, Developmental , Hippocampus , Nerve Tissue Proteins , Receptors, Peptide , Animals , Hippocampus/metabolism , Hippocampus/embryology , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , Female , Mice, Inbred C57BL , Male , Tenascin , Receptors, G-Protein-Coupled
SELECTION OF CITATIONS
SEARCH DETAIL
...