Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.750
Filter
1.
Mol Genet Metab ; 142(1): 108455, 2024 May.
Article in English | MEDLINE | ID: mdl-38531184

ABSTRACT

Creatine transporter deficiency has been described with normal or uninformative levels of creatine and creatinine in plasma, while urine has been the preferred specimen type for biochemical diagnosis. We report a cohort of untreated patients with creatine transporter deficiency and abnormal plasma creatine panel results, characterized mainly by markedly decreased plasma creatinine. We conclude that plasma should be considered a viable specimen type for the biochemical diagnosis of this disorder, and abnormal results should be followed up with further confirmatory testing.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Creatine/deficiency , Creatinine , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Humans , Creatine/blood , Creatine/urine , Creatinine/blood , Creatinine/urine , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/blood , Male , Female , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/diagnosis , Child , Child, Preschool , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/blood , Nerve Tissue Proteins/deficiency , Infant , Adolescent , Membrane Transport Proteins/genetics , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/blood , Adult
2.
Glia ; 72(7): 1217-1235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38511347

ABSTRACT

Brain function is critically dependent on correct circuit assembly. Microglia are well-known for their important roles in immunological defense and neural plasticity, but whether they can also mediate experience-induced correction of miswired circuitry is unclear. Ten-m3 knockout (KO) mice display a pronounced and stereotyped visuotopic mismapping of ipsilateral retinal inputs in their visual thalamus, providing a useful model to probe circuit correction mechanisms. Environmental enrichment (EE) commenced around birth, but not later in life, can drive a partial correction of the most mismapped retinal inputs in Ten-m3 KO mice. Here, we assess whether enrichment unlocks the capacity for microglia to selectively engulf and remove miswired circuitry, and the timing of this effect. Expression of the microglial-associated lysosomal protein CD68 showed a clear enrichment-driven, spatially restricted change which had not commenced at postnatal day (P)18, was evident at P21, more robust at P25, and had ceased by P30. This was observed specifically at the corrective pruning site and was absent at a control site. An engulfment assay at the corrective pruning site in P25 mice showed EE-driven microglial-uptake of the mismapped axon terminals. This was temporally and spatially specific, as no enrichment-driven microglial engulfment was seen in P18 KO mice, nor the control locus. The timecourse of the EE-driven corrective pruning as determined anatomically, aligned with this pattern of microglia reactivity and engulfment. Collectively, these findings show experience can drive targeted microglial engulfment of miswired neural circuitry during a restricted postnatal window. This may have important therapeutic implications for neurodevelopmental conditions involving aberrant neural connectivity.


Subject(s)
Animals, Newborn , Mice, Knockout , Microglia , Animals , Microglia/metabolism , Microglia/physiology , Mice, Inbred C57BL , Mice , Neuronal Plasticity/physiology , Antigens, CD/metabolism , Visual Pathways/physiology , Antigens, Differentiation, Myelomonocytic/metabolism , Retina/physiology , Retina/cytology , Retina/metabolism , Environment , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/deficiency , CD68 Molecule
3.
J Mol Biol ; 436(2): 168383, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38070861

ABSTRACT

Creatine is an essential metabolite for the storage and rapid supply of energy in muscle and nerve cells. In humans, impaired metabolism, transport, and distribution of creatine throughout tissues can cause varying forms of mental disability, also known as creatine deficiency syndrome (CDS). So far, 80 mutations in the creatine transporter (SLC6A8) have been associated to CDS. To better understand the effect of human genetic variants on the physiology of SLC6A8 and their possible impact on CDS, we studied 30 missense variants including 15 variants of unknown significance, two of which are reported here for the first time. We expressed these variants in HEK293 cells and explored their subcellular localization and transport activity. We also applied computational methods to predict variant effect and estimate site-specific changes in thermodynamic stability. To explore variants that might have a differential effect on the transporter's conformers along the transport cycle, we constructed homology models of the inward facing, and outward facing conformations. In addition, we used mass-spectrometry to study proteins that interact with wild type SLC6A8 and five selected variants in HEK293 cells. In silico models of the protein complexes revealed how two variants impact the interaction interface of SLC6A8 with other proteins and how pathogenic variants lead to an enrichment of ER protein partners. Overall, our integrated analysis disambiguates the pathogenicity of 15 variants of unknown significance revealing diverse mechanisms of pathogenicity, including two previously unreported variants obtained from patients suffering from the creatine deficiency syndrome.


Subject(s)
Brain Diseases, Metabolic, Inborn , Creatine , Mental Retardation, X-Linked , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Humans , Creatine/deficiency , HEK293 Cells , Mental Retardation, X-Linked/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Brain Diseases, Metabolic, Inborn/genetics , DNA Mutational Analysis/methods , Mutation, Missense , Computational Biology/methods
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35022233

ABSTRACT

Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.


Subject(s)
Cortical Synchronization/physiology , Hippocampus/physiology , Membrane Proteins/metabolism , Nerve Net/physiology , Nerve Tissue Proteins/metabolism , Synapses/physiology , Animals , CA3 Region, Hippocampal/metabolism , Dentate Gyrus/metabolism , Entorhinal Cortex/metabolism , Long-Term Potentiation , Membrane Proteins/deficiency , Mice, Knockout , Mossy Fibers, Hippocampal/metabolism , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Pseudopodia/metabolism , Synaptic Transmission/physiology
5.
Anticancer Res ; 42(2): 791-799, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093877

ABSTRACT

BACKGROUND/AIM: We previously observed higher prevalence of high-grade pancreatic intraepithelial neoplasia (PanIN) in LSL-KrasG12D/+; Pdx1Cre/+ (KC-Crmp4wild) mice than LSL-KrasG12D/+; Pdx1Cre/+; Crmp4-/- (KC-Crmp4-/-) mice. This study investigated the relationship between collapsin response mediator protein 4 (CRMP4) and immune cell infiltration in pancreatic cancer. MATERIALS AND METHODS: PanIN was induced by intraperitoneal injection of caerulein into KC-Crmp4wild and KC-Crmp4-/- mice, and immune cells in PanIN lesions were compared. Subcutaneous tumors were created by injecting Pan02 cells, and tumor diameter was compared between Crmp4wild and Crmp4-/- mice every 7 days. Peritumoral immune cells were examined immunohisto chemically. RESULTS: High-grade PanIN in KC mice showed statistically significantly high expression of CD163 (p=0.031) and CD11b (p=0.027). Following subcutaneous injection of Pan02 cells, tumor diameter was greater in Crmp4wild mice than Crmp4-/- mice. Crmp4wild mice exhibited higher CD163 and CD11b expression than Crmp4-/- mice in tumors (p<0.001). CONCLUSION: CRMP4 might promote pancreatic cancer by up-regulating M2 macrophages and myeloid-derived suppressor cells.


Subject(s)
Macrophages/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Nerve Tissue Proteins/metabolism , Pancreatic Neoplasms/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , CD11b Antigen/metabolism , Cell Line, Tumor , Disease Models, Animal , Mice , Nerve Tissue Proteins/deficiency , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Precancerous Conditions/immunology , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Receptors, Cell Surface/metabolism , Tumor Burden
6.
Biochem Biophys Res Commun ; 587: 107-112, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34871997

ABSTRACT

It is very important to maintain normal levels of risk avoidance in daily life. We found that DISC1-NTM mice, which are a model for mental disorders, had a phenotype marked by a risk-avoidance impairment as measured in an open-field test (OFT). We used optogenetic methods to modulate glutamatergic neurons in the basolateral amygdala (BLA) in an attempt to rescue this risk-avoidance impairment. We found that photostimulation of BLA neurons at 20 Hz modified DISC1-NTM mouse behavior from low risk avoidance to high risk avoidance. We observed following photostimulation that, compared to controls, the number of entries to the center of the open field was lower and less time was spent in the central area. We also found that the time spent immobile was higher during photostimulation compared with WT mice. We also used a lower photostimulation frequency of 5 Hz, which activated BLA glutamatergic neurons and rescued the risk-avoidance impairment in DISC1-NTM mice. Our findings confirm that the BLA participates in diverse risk-avoidance behavior. Our results are also a reminder that differences in neuronal firing patterns within the same pathway may lead to different physiological functions.


Subject(s)
Avoidance Learning/physiology , Basolateral Nuclear Complex/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Action Potentials/physiology , Animals , Basolateral Nuclear Complex/pathology , Female , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/deficiency , Neurons/pathology , Optogenetics/methods , Patch-Clamp Techniques , Photic Stimulation/methods , Risk-Taking
7.
Biochem Biophys Res Commun ; 586: 114-120, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34839189

ABSTRACT

Prepulse inhibition (PPI) is a neurophysiological finding that is decreased in schizophrenia patients and has been used in pathophysiology studies of schizophrenia and the development of antipsychotic drugs. PPI is affected by several drugs including amphetamine, ketamine, and nicotinic agents, and it is reported that several brain regions and modulatory neurotransmitters are involved in PPI. Here we showed that mice with IRSp53 deletion in each dopaminergic, cholinergic, oxytocinergic, and serotoninergic modulatory neurons showed a decrease in PPI. Other than PPI, there were no other behavioral changes among IRSp53 deletion mice. Through this study, we could reconfirm that dysfunction of each modulatory neuron such as dopamine, acetylcholine, oxytocin, and serotonin can result in PPI impairment, and it should be considered that PPI could be broadly affected by changes in one of a certain kind of modulatory neurons.


Subject(s)
Brain/metabolism , Cholinergic Neurons/metabolism , Dopaminergic Neurons/metabolism , Nerve Tissue Proteins/genetics , Prepulse Inhibition , Serotonergic Neurons/metabolism , Acetylcholine/metabolism , Animals , Brain/pathology , Brain Mapping , Cholinergic Neurons/pathology , Dopamine/metabolism , Dopaminergic Neurons/pathology , Gene Deletion , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Noise , Oxytocin/metabolism , Reflex, Startle , Serotonergic Neurons/pathology , Serotonin/metabolism
8.
Cell Death Dis ; 12(11): 966, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667161

ABSTRACT

Numb, a stem cell fate determinant, acts as a tumor suppressor and is closely related to a wide variety of malignancies. Intrahepatic cholangiocarcinoma (iCCA) originates from hepatic progenitors (HPCs); however, the role of Numb in HPC malignant transformation and iCCA development is still unclear. A retrospective cohort study indicated that Numb was frequently decreased in tumor tissues and suggests poor prognosis in iCCA patients. Consistently, in a chemically induced iCCA mouse model, Numb was downregulated in tumor cells compared to normal cholangiocytes. In diet-induced chronic liver injury mouse models, Numb ablation significantly promoted histological impairment, HPC expansion, and tumorigenesis. Similarly, Numb silencing in cultured iCCA cells enhanced cell spheroid growth, invasion, metastasis, and the expression of stem cell markers. Mechanistically, Numb was found to bind to the Notch intracellular domain (NICD), and Numb ablation promoted Notch signaling; this effect was reversed when Notch signaling was blocked by γ-secretase inhibitor treatment. Our results suggested that loss of Numb plays an important role in promoting HPC expansion, HPC malignant transformation, and, ultimately, iCCA development in chronically injured livers. Therapies targeting suppressed Numb are promising for the treatment of iCCA.


Subject(s)
Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , Liver/pathology , Membrane Proteins/deficiency , Nerve Tissue Proteins/deficiency , Receptors, Notch/metabolism , Signal Transduction , Stem Cells/metabolism , Animals , Bile Duct Neoplasms/genetics , Body Weight , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Proliferation , Cholangiocarcinoma/genetics , Down-Regulation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Ki-67 Antigen/metabolism , Liver Cirrhosis/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organ Size , Prognosis , Protein Domains , Receptors, Notch/chemistry , Transcription Factor HES-1/metabolism
9.
Cells ; 10(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34685703

ABSTRACT

IQSEC2 is a guanine nucleotide exchange factor (GEF) for ADP-ribosylation factor 6 (Arf6), of which protein is exclusively localized to the postsynaptic density of the excitatory synapse. Human genome studies have revealed that the IQSEC2 gene is associated with X-linked neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism. In this study, we examined the behavior and synapse function in IQSEC2 knockout (KO) mice that we generated using CRIPSR/Cas9-mediated genome editing to solve the relevance between IQSEC2 deficiency and the pathophysiology of neurodevelopmental disorders. IQSEC2 KO mice exhibited autistic behaviors, such as overgrooming and social deficits. We identified that up-regulation of c-Fos expression in the medial prefrontal cortex (mPFC) induced by social stimulation was significantly attenuated in IQSEC2 KO mice. Whole cell electrophysiological recording identified that synaptic transmissions mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), N-methyl-D-aspartate receptor (NMDAR), and γ-aminobutyric acid receptor (GABAR) were significantly decreased in pyramidal neurons in layer 5 of the mPFC in IQSEC2 KO mice. Reexpression of IQSEC2 isoform 1 in the mPFC of IQSEC2 KO mice using adeno-associated virus (AAV) rescued both synaptic and social deficits, suggesting that impaired synaptic function in the mPFC is responsible for social deficits in IQSEC2 KO mice.


Subject(s)
Autistic Disorder/pathology , Autistic Disorder/physiopathology , Guanine Nucleotide Exchange Factors/deficiency , Nerve Net/physiopathology , Nerve Tissue Proteins/deficiency , Prefrontal Cortex/physiopathology , Social Behavior , ADP-Ribosylation Factor 6 , Animals , Grooming , Guanine Nucleotide Exchange Factors/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pyramidal Cells/metabolism , Receptors, AMPA/metabolism , Receptors, GABA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synaptic Transmission , Up-Regulation
10.
Biochem Biophys Res Commun ; 582: 144-149, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34715405

ABSTRACT

The chemical synapse is one type of cell-adhesion system that transmits information from a neuron to another neuron in the complex neuronal network in the brain. Synaptic transmission is the rate-limiting step during the information processing in the neuronal network and its plasticity is involved in cognitive functions. Thus, morphological and electrophysiological analyses of synapses are of particular importance in neuroscience research. In the current study, we applied super-resolved three-dimensional stimulated emission depletion (3D-STED) microscopy for the morphological analyses of synapses. This approach allowed us to estimate the precise number of excitatory and inhibitory synapses in the mouse hippocampal tissue. We discovered a region-specific increase in excitatory synapses in a model mouse of autism spectrum disorder, Neuroligin-3 KO, with this method. This type of analysis will open a new field in developmental neuroscience in the future.


Subject(s)
Autism Spectrum Disorder/genetics , CA1 Region, Hippocampal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Membrane Proteins/genetics , Microscopy/methods , Nerve Tissue Proteins/genetics , Neurons/metabolism , Synapses/genetics , Animals , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , Cell Adhesion Molecules, Neuronal/deficiency , Cognition/physiology , Disease Models, Animal , Gene Knockout Techniques , Homer Scaffolding Proteins/genetics , Homer Scaffolding Proteins/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy/instrumentation , Nerve Tissue Proteins/deficiency , Neuroimaging/instrumentation , Neuroimaging/methods , Neurons/pathology , Synapses/metabolism , Synapses/ultrastructure , Synaptic Transmission/physiology
11.
Nat Commun ; 12(1): 5289, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489419

ABSTRACT

Microglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then, we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing them with parenchymal microglia (PCMs) in their morphological activities including during microglial depletion and repopulation. Molecularly, we identify P2RY12 receptors as a regulator of CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, microglial elimination triggered capillary dilation, blood flow increase, and impaired vasodilation that were recapitulated in P2RY12-/- and PANX1-/- mice suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.


Subject(s)
Brain/blood supply , Connexins/genetics , Microglia/metabolism , Myeloid Cells/metabolism , Nerve Tissue Proteins/genetics , Receptors, Purinergic P2Y12/genetics , Animals , Brain/cytology , Brain/diagnostic imaging , Brain/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Count , Cerebrovascular Circulation/physiology , Connexins/deficiency , Electrodes, Implanted , Female , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Knockout , Microglia/cytology , Myeloid Cells/cytology , Nerve Tissue Proteins/deficiency , Neuroimaging/instrumentation , Neuroimaging/methods , Receptors, Purinergic P2Y12/deficiency , Receptors, Purinergic P2Y12/metabolism , Vasodilation/physiology
12.
J Neurosci ; 41(46): 9633-9649, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34580165

ABSTRACT

Epilepsy Aphasia Syndromes (EAS) are a spectrum of childhood epileptic, cognitive, and language disorders of unknown etiology. CNKSR2 is a strong X-linked candidate gene implicated in EAS; however, there have been no studies of genetic models to dissect how its absence may lead to EAS. Here we develop a novel Cnksr2 KO mouse line and show that male mice exhibit increased neural activity and have spontaneous electrographic seizures. Cnksr2 KO mice also display significantly increased anxiety, impaired learning and memory, and a progressive and dramatic loss of ultrasonic vocalizations. We find that Cnksr2 is expressed in cortical, striatal, and cerebellar regions and is localized at both excitatory and inhibitory postsynapses. Proteomics analysis reveals Cnksr2 anchors key binding partners at synapses, and its loss results in significant alterations of the synaptic proteome, including proteins implicated in epilepsy disorders. Our results validate that loss of CNKSR2 leads to EAS and highlights the roles of Cnksr2 in synaptic organization and neuronal network activity.SIGNIFICANCE STATEMENT Epilepsy Aphasia Syndromes (EAS) are at the severe end of a spectrum of cognitive-behavioral symptoms seen in childhood epilepsies, and they remain an inadequately understood disorder. The prognosis of EAS is frequently poor, and patients have life-long language and cognitive disturbances. Here we describe a genetic mouse model of EAS, based on the KO of the EAS risk gene Cnksr2 We show that these mice exhibit electrophysiological and behavioral phenotypes similar to those of patients, providing an important new model for future studies of EAS. We also provide insights into the molecular disturbances downstream of Cnksr2 loss by using in vivo quantitative proteomics tools.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Disease Models, Animal , Landau-Kleffner Syndrome , Nerve Tissue Proteins/deficiency , Animals , Behavior, Animal , Mice , Mice, Knockout , Phenotype , Syndrome
13.
Sci Rep ; 11(1): 18086, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508147

ABSTRACT

Leukotoxin (LtxA) (Trade name, Leukothera) is a protein that is secreted from the oral bacterium Aggregatibacter actinomycetemcomitans, which targets and kills activated white blood cells (WBCs) by binding to lymphocyte function associated antigen-1 (LFA-1). Interaction between LtxA and Jurkat T-cells results in cell death and is characterized by increased intracellular Ca2+, activation of caspases, clustering of LtxA and LFA-1 within lipid rafts, and involvement of the Fas death receptor. Here, we show that LtxA can kill malignant lymphocytes via apoptotic and necrotic forms of cell death. We show that LtxA causes activation of caspases and PARP, cleavage of pannexin-1 (Panx1) channels, and expulsion of ATP, ultimately leading to cell death via apoptosis and necrosis. CRISPR-Cas9 mediated knockout (K/O) of Panx1 in Jurkat cells prevented ATP expulsion and resulted in resistance to LtxA for both apoptotic and necrotic forms of death. Resistance to necrosis could only be overcome when supplementing LtxA with endogenous ATP (bzATP). The combination of LtxA and bzATP promoted only necrosis, as no Panx1 K/O cells stained positive for phosphatidylserine (PS) exposure following the combined treatment. Inhibition of LtxA/bzATP-induced necrosis was possible when pretreating Jurkat cells with oATP, a P2X7R antagonist. Similarly, blockage of P2X7Rs with oATP prevented the intracellular mobilization of Ca2+, an important early step in LtxA induced cell death. We show that LtxA is able to kill malignant lymphocytes through an apoptotic death pathway which is potentially linked to a Panx1/P2X7R mediated necrotic form of death. Thus, inhibition of ATP release appears to significantly delay the onset of LtxA induced apoptosis while completely disabling the necrotic death pathway in T-lymphocytes, demonstrating the crucial role of ATP release in LtxA-mediated cell death.


Subject(s)
Connexins/metabolism , Exotoxins/metabolism , Lymphocytes/metabolism , Nerve Tissue Proteins/metabolism , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Calcium/metabolism , Cell Death , Cell Membrane/drug effects , Cell Membrane/metabolism , Connexins/deficiency , Exotoxins/pharmacology , Gene Knockdown Techniques , Humans , Jurkat Cells , Leukemia, Lymphoid/etiology , Leukemia, Lymphoid/metabolism , Leukemia, Lymphoid/pathology , Lymphocytes/pathology , Lymphoma/etiology , Lymphoma/metabolism , Lymphoma/pathology , Nerve Tissue Proteins/deficiency , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Signal Transduction/drug effects
14.
Exp Neurol ; 346: 113854, 2021 12.
Article in English | MEDLINE | ID: mdl-34474008

ABSTRACT

Ischemic stroke is an acute cerebrovascular disease characterized by high mortality, morbidity and disability rates. Ischemia/reperfusion is a critical pathophysiological basis of motor and cognitive dysfunction caused by ischemic stroke. Microglia, innate immune cells of the central nervous system, mediate the neuroinflammatory response to ischemia/reperfusion. PlexinA2 (PLXNA2) plays an important role in the regulation of neuronal axon guidance, the immune response and angiogenesis. However, it is not clear whether PLXNA2 regulates microglia polarization in ischemic stroke or the underlying mechanism. In the present study, we investigated the role of PLXNA2 in rats with middle cerebral artery occlusion/reperfusion (MCAO/R) and BV2 microglia cells with oxygen and glucose deprivation/reoxygenation (OGD/R). A battery of behavioral tests, including the beam balance test, forelimb placement test, foot fault test, cylinder test, CatWalk gait analysis and Morris water maze test were performed to evaluate sensorimotor function, locomotor activity and cognitive ability. The expression of M1/M2-specific markers in the ischemic penumbra and BV2 microglia cells was detected using immunofluorescence staining, quantitative real-time PCR analysis and Western blot analysis. Our study showed that PLXNA2 knockdown accelerated the recovery of motor function and cognitive ability after MCAO/R. In addition, PLXNA2 knockdown restrained proinflammatory cytokine release and promoted anti-inflammatory cytokine release, and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway was involved in PLXNA2 regulated microglia polarization. Taken together, our results indicate that PLXNA2 knockdown reduces neuroinflammation by switching the microglia phenotype from M1 to M2 in the ischemic penumbra of MCAO/R-injured rats, which may be due to the inhibition of mTOR/STAT3 signaling. Treatments targeting PLXNA2 may be a promising therapeutic strategy for ischemic stroke.


Subject(s)
Brain Ischemia/metabolism , Microglia/metabolism , Nerve Tissue Proteins/deficiency , Receptors, Cell Surface/deficiency , Reperfusion Injury/metabolism , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Brain Ischemia/genetics , Brain Ischemia/pathology , Gait Analysis/methods , Gene Knockdown Techniques/methods , Male , Maze Learning/physiology , Microglia/pathology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Recovery of Function/physiology , Reperfusion Injury/genetics , Reperfusion Injury/pathology , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics
15.
J Med Chem ; 64(18): 13766-13779, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34519505

ABSTRACT

5-HT7R belongs to a family of G protein-coupled receptors and is associated with a variety of physiological processes in the central nervous system via the activation of the neurotransmitter serotonin (5-HT). To develop selective and biased 5-HT7R ligands, we designed and synthesized a series of pyrazolyl-diazepanes 2 and pyrazolyl-piperazines 3, which were evaluated for binding affinities to 5-HTR subtypes and functional selectivity for G protein and ß-arrestin signaling pathways of 5-HT7R. Among them, 1-(3-(3-chlorophenyl)-1H-pyrazol-4-yl)-1,4-diazepane 2c showed the best binding affinity for 5-HT7R and selectivity over other 5-HTR subtypes. It was also revealed as a G protein-biased antagonist. The self-grooming behavior test was performed with 2c in vivo with Shank3-/- transgenic (TG) mice, wherein 2c significantly reduced self-grooming duration time to the level of wild-type mice. The results suggest that 5-HT7R could be a potential therapeutic target for treating autism spectrum disorder stereotypy.


Subject(s)
Autistic Disorder/drug therapy , Pyrazoles/therapeutic use , Receptors, Serotonin/metabolism , Serotonin Antagonists/therapeutic use , Animals , Drug Design , Grooming/drug effects , Male , Mice, Transgenic , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Molecular Docking Simulation , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Receptors, Serotonin/chemistry , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/metabolism
16.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34414407

ABSTRACT

Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood. Here, we have investigated the role of reelin in interneuron development in the postnatal neocortex. To preclude early cortical migration defects caused by reelin deficiency, we employed a conditional reelin knockout (RelncKO) mouse to induce postnatal reelin deficiency. Induced reelin deficiency caused dendritic hypertrophy in distal dendritic segments of neuropeptide Y-positive (NPY+) and calretinin-positive (Calr+) interneurons, and in proximal dendritic segments of parvalbumin-positive (Parv+) interneurons. Chronic recombinant Reelin treatment rescued dendritic hypertrophy in Relncko interneurons. Moreover, we provide evidence that RelncKO interneuron hypertrophy is due to presynaptic GABABR dysfunction. Thus, GABABRs in RelncKO interneurons were unable to block N-type (Cav2.2) Ca2+ channels that control neurotransmitter release. Consequently, the excessive Ca2+ influx through AMPA receptors, but not NMDA receptors, caused interneuron dendritic hypertrophy. These findings suggest that reelin acts as a 'stop-growth-signal' for postnatal interneuron maturation.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dendrites/metabolism , Extracellular Matrix Proteins/metabolism , Interneurons/cytology , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Calbindin 2/metabolism , Calcium/metabolism , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/pharmacology , Dendrites/drug effects , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/pharmacology , Hypertrophy , Interneurons/drug effects , Interneurons/metabolism , Mice , Mice, Knockout , Neocortex/cytology , Neocortex/drug effects , Neocortex/pathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/pharmacology , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Receptors, GABA-B/metabolism , Receptors, Glutamate/metabolism , Reelin Protein , Serine Endopeptidases/deficiency , Serine Endopeptidases/pharmacology
17.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361042

ABSTRACT

Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.


Subject(s)
Brain/metabolism , Drosophila Proteins/metabolism , Lipid Droplets/metabolism , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Reactive Oxygen Species/metabolism , Animals , Brain/cytology , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster , Lipid Metabolism , Mitochondria/ultrastructure , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurons/metabolism , Oxidative Stress
18.
PLoS One ; 16(8): e0256181, 2021.
Article in English | MEDLINE | ID: mdl-34388204

ABSTRACT

Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Genes, X-Linked , Genome, Human , Mental Retardation, X-Linked/genetics , Nerve Tissue Proteins/genetics , Regulatory Elements, Transcriptional , Tenascin/genetics , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Chromosome Mapping , Cohort Studies , Disease Models, Animal , Embryo, Nonmammalian , Exome , Fragile X Mental Retardation Protein/metabolism , Gene Frequency , Genotype , Humans , Male , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/pathology , Mice , Nerve Tissue Proteins/deficiency , Pedigree , Phenotype , Tenascin/deficiency , Zebrafish
19.
Mol Neurobiol ; 58(11): 6006-6019, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34435329

ABSTRACT

Traumatic brain injury (TBI) can produce lasting cognitive, emotional, and somatic difficulties that can impact quality of life for patients living with an injury. Impaired hippocampal function and synaptic alterations have been implicated in contributing to cognitive difficulties in experimental TBI models. In the synapse, neuronal communication is facilitated by the regulated release of neurotransmitters from docking presynaptic vesicles. The synaptic vesicle glycoprotein 2 (SV2) isoforms SV2A and SV2B play central roles in the maintenance of the readily releasable pool of vesicles and the coupling of calcium to the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex responsible for vesicle docking. Recently, we reported the findings of TBI-induced reductions in presynaptic vesicle density and SNARE complex formation; however, the effect of TBI on SV2 is unknown. To investigate this, rats were subjected to controlled cortical impact (CCI) or sham control surgery. Abundance of SV2A and SV2B were assessed at 1, 3, 7, and 14 days post-injury by immunoblot. SV2A and SV2B were reduced in the cortex at several time points and in the hippocampus at every time point assessed. Immunohistochemical staining and quantitative intensity measurements completed at 14 days post-injury revealed reduced SV2A immunoreactivity in all hippocampal subregions and reduced SV2B immunoreactivity in the molecular layer after CCI. Reductions in SV2A abundance and immunoreactivity occurred concomitantly with motor dysfunction and spatial learning and memory impairments in the 2 weeks post-injury. These findings provide novel evidence for the effect of TBI on SV2 with implications for impaired neurotransmission neurobehavioral dysfunction after TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Membrane Glycoproteins/deficiency , Memory Disorders/etiology , Nerve Tissue Proteins/deficiency , Animals , Brain Injuries, Traumatic/complications , Escape Reaction , Male , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Memory Disorders/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Postural Balance , Random Allocation , Rats , Rats, Sprague-Dawley , SNARE Proteins/metabolism , Spatial Learning , Synaptic Vesicles/metabolism , Time Factors
20.
Front Immunol ; 12: 641311, 2021.
Article in English | MEDLINE | ID: mdl-34305885

ABSTRACT

PTX3 is a unique member of the long pentraxins family and plays an indispensable role in regulating the immune system. We previously showed that PTX3 deletion aggravates allergic inflammation via a Th17 -dominant phenotype and enhanced CD4 T cell survival using a murine model of ovalbumin (OVA) induced allergic inflammation. In this study, we identified that upon OVA exposure, increased infiltration of CD11c+CD11b+ dendritic cells (DCs) was observed in the lungs of PTX3-/- mice compared to wild type littermate. Further analysis showed that a short-term OVA exposure led to an increased number of bone marrow common myeloid progenitors (CMP) population concomitantly with increased Ly6Chigh CCR2high monocytes and CD11c+CD11b+ DCs in the lungs. Also, pulmonary CD11c+CD11b+ DCs from OVA-exposed PTX3-/- mice exhibited enhanced expression of maturation markers, chemokines receptors CCR2, and increased OVA uptake and processing compared to wild type controls. Taken together, our data suggest that PTX3 deficiency heightened lung CD11c+CD11b+DC numbers and function, hence exacerbating airway inflammatory response.


Subject(s)
C-Reactive Protein/deficiency , C-Reactive Protein/immunology , Dendritic Cells/immunology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/immunology , Respiratory Hypersensitivity/immunology , Allergens/immunology , Allergens/toxicity , Animals , CD11b Antigen/immunology , CD11c Antigen/immunology , Disease Models, Animal , Female , Mice , Mice, Knockout , Ovalbumin/immunology , Ovalbumin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...