Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43.836
Filter
1.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38958606

ABSTRACT

Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.


Subject(s)
Caloric Restriction , Forkhead Box Protein O1 , Ghrelin , Receptors, Notch , Signal Transduction , Animals , Ghrelin/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mice , Cell Differentiation , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Cell Proliferation , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Gastric Mucosa/metabolism , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Male , Stomach
2.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2162-2177, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044582

ABSTRACT

This study aimed to screen for the long non-coding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) capable of regulating the expression of cocaine- and amphetamine-regulated transcriptional peptide (CART) in the bovine hypothalamus and elucidate the underlying mechanism. StarBase v2.0, NCBI, and DIANA tools were used to predict the lncRNAs targeting miR-381 and miR-491, which were responsible for inhibiting CART expression. The binding sites were analyzed, and the endogenous expression of the selected lncRNAs was determined by semi-quantitative RT-PCR of the hypothalamus tissue from three healthy adult Simmental cows. The dual-luciferase reporter gene assay was employed to detect the targeted binding relationship between miR-381/491 and lncRNAs. The over-expression vectors of lncRNAs, CART, and miR-381/491 mimics were constructed and transfected into 293T cells to reveal the mechanism of lncRNAs in regulating the CART expression. Animal experiments were conducted to analyze the regulatory function of the strongest lncRNA at the cellular level. The results showed that lncRNAs TUG1, SNHG3, H19, SNHG12, and DANCR were expressed in the bovine hypothalamus. The lncRNAs TUG1 and SNHG3 had binding sites for miR-381, and H19, SNHG12, and DANCR had binding sites for miR-491. The dual-luciferase reporter gene assay showed that miR-381 inhibited the relative luciferase activities of TUG1-WT (P < 0.05) and SNHG3-WT (P < 0.01), and miR-491 inhibited the luciferase activities of DANCR-WT (P < 0.05), H19-WT (P < 0.05), and SNHG12-WT (P < 0.01). SNHG3 and SNHG12 up-regulated the CART expression by specifically binding to miR-381 (P < 0.001) and miR-491 (P < 0.01), respectively, and SNHG3 had the strongest effect of regulating CART expression. The results from animal experiments showed that SNHG3 significantly up-regulated the mRNA and protein levels of CART by specifically binding to miR-381. This study confirmed that the lncRNA SNHG3, acting as a competing endogenous RNA of miR-381, significantly up-regulated CART expression at the transcriptional and post-transcriptional levels, laying a foundation for deciphering the mechanism of the molecular network regulation of CART in the bovine hypothalamus.


Subject(s)
Hypothalamus , MicroRNAs , Nerve Tissue Proteins , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cattle , MicroRNAs/genetics , MicroRNAs/metabolism , Hypothalamus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Gene Expression Regulation , Humans
3.
Cell Rep ; 43(7): 114427, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38986610

ABSTRACT

Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions. The amino-terminal domain (ATD) of the GluK4 KAR subunit binds to C1ql1, provided by CFs, and associates with Bai3, an adhesion-type G protein-coupled receptor expressed in PC dendrites. Mice lacking GluK4 exhibit no KAR-mediated responses, reduced C1ql1 and Bai3 levels, and fewer CF-PC synapses, along with impaired long-term depression and oculomotor learning. Remarkably, introduction of the ATD of GluK4 significantly improves all these phenotypes. These findings demonstrate that KARs act as synaptic scaffolds, orchestrating synapses by forming a KAR-C1ql1-Bai3 complex in the cerebellum.


Subject(s)
Cerebellum , Neuronal Plasticity , Purkinje Cells , Receptors, Kainic Acid , Synapses , Animals , Synapses/metabolism , Receptors, Kainic Acid/metabolism , Neuronal Plasticity/physiology , Cerebellum/metabolism , Mice , Purkinje Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , Humans
4.
Elife ; 132024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051998

ABSTRACT

The Hippo pathway plays a central role in tissue development and homeostasis. However, the function of Hippo in pancreatic endocrine development remains obscure. Here, we generated novel conditional genetically engineered mouse models to examine the roles of Hippo pathway-mediated YAP1/TAZ inhibition in the development stages of endocrine specification and differentiation. While YAP1 protein was localized to the nuclei in bipotent progenitor cells, Neurogenin 3 expressing endocrine progenitors completely lost YAP1 expression. Using genetically engineered mouse models, we found that inactivation of YAP1 requires both an intact Hippo pathway and Neurogenin 3 protein. Gene deletion of Lats1 and 2 kinases (Lats1&2) in endocrine progenitor cells of developing mouse pancreas using Neurog3Cre blocked endocrine progenitor cell differentiation and specification, resulting in reduced islets size and a disorganized pancreas at birth. Loss of Lats1&2 in Neurogenin 3 expressing cells activated YAP1/TAZ transcriptional activity and recruited macrophages to the developing pancreas. These defects were rescued by deletion of Yap1/Wwtr1 genes, suggesting that tight regulation of YAP1/TAZ by Hippo signaling is crucial for pancreatic endocrine specification. In contrast, deletion of Lats1&2 using ß-cell-specific Ins1CreER resulted in a phenotypically normal pancreas, indicating that Lats1&2 are indispensable for differentiation of endocrine progenitors but not for that of ß-cells. Our results demonstrate that loss of YAP1/TAZ expression in the pancreatic endocrine compartment is not a passive consequence of endocrine specification. Rather, Hippo pathway-mediated inhibition of YAP1/TAZ in endocrine progenitors is a prerequisite for endocrine specification and differentiation.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hippo Signaling Pathway , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Islets of Langerhans/metabolism , Islets of Langerhans/embryology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Acyltransferases , Tumor Suppressor Proteins
5.
Biomolecules ; 14(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39062513

ABSTRACT

Lowe Syndrome (LS) is a rare X-linked disorder characterized by renal dysfunction, cataracts, and several central nervous system (CNS) anomalies. The mechanisms underlying the neurological dysfunction in LS remain unclear, albeit they share some phenotypic characteristics similar to the deficiency or dysfunction of the Reelin signaling, a relevant pathway with roles in CNS development and neuronal functions. In this study, we investigated the role of OCRL1, an inositol polyphosphate 5-phosphatase encoded by the OCRL gene, mutated in LS, focusing on its impact on endosomal trafficking and receptor recycling in human neuronal cells. Specifically, we tested the effects of OCRL1 deficiency in the trafficking and signaling of ApoER2/LRP8, a receptor for the ligand Reelin. We found that loss of OCRL1 impairs ApoER2 intracellular trafficking, leading to reduced receptor expression and decreased levels at the plasma membrane. Additionally, human neurons deficient in OCRL1 showed impairments in ApoER2/Reelin-induced responses. Our findings highlight the critical role of OCRL1 in regulating ApoER2 endosomal recycling and its impact on the ApoER2/Reelin signaling pathway, providing insights into potential mechanisms underlying the neurological manifestations of LS.


Subject(s)
Cell Adhesion Molecules, Neuronal , Endosomes , Extracellular Matrix Proteins , LDL-Receptor Related Proteins , Nerve Tissue Proteins , Neurons , Phosphoric Monoester Hydrolases , Protein Transport , Reelin Protein , Serine Endopeptidases , Humans , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/deficiency , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/deficiency , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/deficiency , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/deficiency , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/deficiency , Endosomes/metabolism , Neurons/metabolism , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics , Signal Transduction , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism
6.
ASN Neuro ; 16(1): 2371164, 2024.
Article in English | MEDLINE | ID: mdl-39024558

ABSTRACT

There is a high co-morbidity between childhood epilepsy and autism spectrum disorder (ASD), with age of seizure onset being a critical determinant of behavioral outcomes. The interplay between these comorbidities has been investigated in animal models with results showing that the induction of seizures at early post-natal ages leads to learning and memory deficits and to autistic-like behavior in adulthood. Modifications of the excitation/inhibition (glutamate/GABA, ATP/adenosine) balance that follows early-life seizures (ELS) are thought to be the physiological events that underlie neuropsychiatric and neurodevelopmental disorders. Although alterations in purinergic/adenosinergic signaling have been implicated in seizures and ASD, it is unknown whether the ATP release channels, Pannexin1 (Panx1), contribute to ELS-induced behavior changes. To tackle this question, we used the ELS-kainic acid model in transgenic mice with global and cell type specific deletion of Panx1 to evaluate whether these channels were involved in behavioral deficits that occur later in life. Our studies show that ELS results in Panx1 dependent social behavior deficits and also in poor performance in a spatial memory test that does not involve Panx1. These findings provide support for a link between ELS and adult behavioral deficits. Moreover, we identify neuronal and not astrocyte Panx1 as a potential target to specifically limit astrogliosis and social behavioral deficits resultant from early-life seizures.


Subject(s)
Connexins , Mice, Transgenic , Nerve Tissue Proteins , Seizures , Social Behavior , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Connexins/metabolism , Connexins/genetics , Seizures/metabolism , Mice , Male , Mice, Inbred C57BL , Kainic Acid , Disease Models, Animal
7.
Proc Natl Acad Sci U S A ; 121(29): e2409605121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985768

ABSTRACT

Members of the synaptophysin and synaptogyrin family are vesicle proteins with four transmembrane domains. In spite of their abundance in synaptic vesicle (SV) membranes, their role remains elusive and only mild defects at the cellular and organismal level are observed in mice lacking one or more family members. Here, we show that coexpression with synapsin in fibroblasts of each of the four brain-enriched members of this family-synaptophysin, synaptoporin, synaptogyrin 1, and synaptogyrin 3-is sufficient to generate clusters of small vesicles in the same size range of SVs. Moreover, mice lacking all these four proteins have larger SVs. We conclude that synaptophysin and synaptogyrin family proteins play an overlapping function in the biogenesis of SVs and in determining their small size.


Subject(s)
Synaptic Vesicles , Synaptogyrins , Synaptophysin , Animals , Synaptophysin/metabolism , Synaptophysin/genetics , Synaptic Vesicles/metabolism , Mice , Synaptogyrins/metabolism , Synaptogyrins/genetics , Synapsins/metabolism , Synapsins/genetics , Mice, Knockout , Fibroblasts/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Rats , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics
8.
Science ; 385(6704): 91-99, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963839

ABSTRACT

Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in ß-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.


Subject(s)
Anemia, Sickle Cell , Antisickling Agents , Fetal Hemoglobin , Kruppel-Like Transcription Factors , Nerve Tissue Proteins , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Antisickling Agents/chemistry , Antisickling Agents/pharmacology , Antisickling Agents/therapeutic use , Crystallography, X-Ray , Drug Discovery , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Kruppel-Like Transcription Factors/metabolism , Macaca fascicularis , Nerve Tissue Proteins/metabolism , Proteolysis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
9.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968120

ABSTRACT

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Subject(s)
Dyrk Kinases , Hedgehog Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3 , Animals , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Proliferation , Cilia/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Nuclear Proteins , Repressor Proteins
10.
BMC Neurosci ; 25(1): 32, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971749

ABSTRACT

BACKGROUND: The postsynaptic density is an elaborate protein network beneath the postsynaptic membrane involved in the molecular processes underlying learning and memory. The postsynaptic density is built up from the same major proteins but its exact composition and organization differs between synapses. Mutations perturbing protein: protein interactions generally occurring in this network might lead to effects specific for cell types or processes, the understanding of which can be especially challenging. RESULTS: In this work we use systems biology-based modeling of protein complex distributions in a simplified set of major postsynaptic proteins to investigate the effect of a hypomorphic Shank mutation perturbing a single well-defined interaction. We use data sets with widely variable abundances of the constituent proteins. Our results suggest that the effect of the mutation is heavily dependent on the overall availability of all the protein components of the whole network and no trivial correspondence between the expression level of the directly affected proteins and overall complex distribution can be observed. CONCLUSIONS: Our results stress the importance of context-dependent interpretation of mutations. Even the weakening of a generally occurring protein: protein interaction might have well-defined effects, and these can not easily be predicted based only on the abundance of the proteins directly affected. Our results provide insight on how cell-specific effects can be exerted by a mutation perturbing a generally occurring interaction even when the wider interaction network is largely similar.


Subject(s)
Mutation , Nerve Tissue Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Humans , Animals , Post-Synaptic Density/metabolism , Computer Simulation , Membrane Proteins/genetics , Membrane Proteins/metabolism , Systems Biology/methods
11.
Adv Neurobiol ; 38: 81-109, 2024.
Article in English | MEDLINE | ID: mdl-39008012

ABSTRACT

When neurons are recruited to form the memory engram, they are driven to activate the expression of a series of immediate-early genes (IEGs). While these IEGs have been used relatively indiscriminately to identify the so-called engram neurons, recent research has demonstrated that different IEG ensembles can be physically and functionally distinct within the memory engram. This inherent heterogeneity of the memory engram is driven by the diversity in the functions and distributions of different IEGs. This process, which we call molecular sorting, is analogous to sorting the entire population of engram neurons into different sub-engrams molecularly defined by different IEGs. In this chapter, we will describe the molecular sorting process by systematically reviewing published work on engram ensemble cells defined by the following four major IEGs: Fos, Npas4, Arc, and Egr1. By comparing and contrasting these likely different components of the memory engram, we hope to gain a better understanding of the logic and significance behind the molecular sorting process for memory functions.


Subject(s)
Early Growth Response Protein 1 , Genes, Immediate-Early , Memory , Neurons , Memory/physiology , Neurons/metabolism , Animals , Humans , Early Growth Response Protein 1/metabolism , Nerve Tissue Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Cytoskeletal Proteins/metabolism
12.
Commun Biol ; 7(1): 831, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977784

ABSTRACT

Microtubule associated proteins (MAPs) are widely expressed in the central nervous system, and have established roles in cell proliferation, myelination, neurite formation, axon specification, outgrowth, dendrite, and synapse formation. We report eleven individuals from seven families harboring predicted pathogenic biallelic, de novo, and heterozygous variants in the NAV3 gene, which encodes the microtubule positive tip protein neuron navigator 3 (NAV3). All affected individuals have intellectual disability (ID), microcephaly, skeletal deformities, ocular anomalies, and behavioral issues. In mouse brain, Nav3 is expressed throughout the nervous system, with more prominent signatures in postmitotic, excitatory, inhibiting, and sensory neurons. When overexpressed in HEK293T and COS7 cells, pathogenic variants impaired NAV3 ability to stabilize microtubules. Further, knocking-down nav3 in zebrafish led to severe morphological defects, microcephaly, impaired neuronal growth, and behavioral impairment, which were rescued with co-injection of WT NAV3 mRNA and not by transcripts encoding the pathogenic variants. Our findings establish the role of NAV3 in neurodevelopmental disorders, and reveal its involvement in neuronal morphogenesis, and neuromuscular responses.


Subject(s)
Developmental Disabilities , Intellectual Disability , Microcephaly , Humans , Microcephaly/genetics , Microcephaly/pathology , Intellectual Disability/genetics , Animals , Male , Female , Mice , Developmental Disabilities/genetics , HEK293 Cells , Zebrafish/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Child, Preschool , Chlorocebus aethiops , COS Cells , Child , Neurons/metabolism , Neurons/pathology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
13.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000549

ABSTRACT

Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold-electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon.


Subject(s)
Antibodies, Monoclonal , Synapses , Animals , Mice , Synapses/ultrastructure , Synapses/metabolism , Antibodies, Monoclonal/immunology , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Co-Repressor Proteins/metabolism , Immunohistochemistry/methods , Protein Domains , Microscopy, Immunoelectron/methods , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/immunology
14.
BMC Biol ; 22(1): 150, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973001

ABSTRACT

BACKGROUND: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS: Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS: Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.


Subject(s)
Grasshoppers , Membrane Proteins , Animals , Grasshoppers/physiology , Grasshoppers/drug effects , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Pheromones/pharmacology , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Female , Courtship , Acetonitriles/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
15.
Nat Commun ; 15(1): 5540, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956042

ABSTRACT

Iron plays a fundamental role in multiple brain disorders. However, the genetic underpinnings of brain iron and its implications for these disorders are still lacking. Here, we conduct an exome-wide association analysis of brain iron, measured by quantitative susceptibility mapping technique, across 26 brain regions among 26,789 UK Biobank participants. We find 36 genes linked to brain iron, with 29 not being previously reported, and 16 of them can be replicated in an independent dataset with 3,039 subjects. Many of these genes are involved in iron transport and homeostasis, such as FTH1 and MLX. Several genes, while not previously connected to brain iron, are associated with iron-related brain disorders like Parkinson's (STAB1, KCNA10), Alzheimer's (SHANK1), and depression (GFAP). Mendelian randomization analysis reveals six causal relationships from regional brain iron to brain disorders, such as from the hippocampus to depression and from the substantia nigra to Parkinson's. These insights advance our understanding of the genetic architecture of brain iron and offer potential therapeutic targets for brain disorders.


Subject(s)
Brain , Exome Sequencing , Iron , Humans , Iron/metabolism , Brain/metabolism , Male , Female , Mendelian Randomization Analysis , Genome-Wide Association Study , Parkinson Disease/genetics , Parkinson Disease/metabolism , Middle Aged , Genetic Predisposition to Disease/genetics , Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adult , Alzheimer Disease/genetics , Alzheimer Disease/metabolism
16.
Nat Neurosci ; 27(7): 1260-1273, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956165

ABSTRACT

Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.


Subject(s)
Astrocytes , Basic Helix-Loop-Helix Transcription Factors , Cellular Reprogramming , Nerve Tissue Proteins , Neurons , YY1 Transcription Factor , Animals , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Astrocytes/metabolism , Mice , Cellular Reprogramming/physiology , Neurons/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Epigenome , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Cells, Cultured
17.
Biol Pharm Bull ; 47(7): 1314-1320, 2024.
Article in English | MEDLINE | ID: mdl-39019611

ABSTRACT

Dab1 is an intracellular adaptor protein essential for brain formation during development. Tyrosine phosphorylation in Dab1 plays important roles in neuronal migration, dendrite development, and synapse formation by affecting several downstream pathways. Reelin is the best-known extracellular protein that induces Dab1 phosphorylation. However, whether other upstream molecule(s) contribute to Dab1 phosphorylation remains largely unknown. Here, we found that EphA4, a member of the Eph family of receptor-type tyrosine kinases, induced Dab1 phosphorylation when co-expressed in cultured cells. Tyrosine residues phosphorylated by EphA4 were the same as those phosphorylated by Reelin in neurons. The autophosphorylation of EphA4 was necessary for Dab1 phosphorylation. We also found that EphA4-induced Dab1 phosphorylation was mediated by the activation of the Src family tyrosine kinases. Interestingly, Dab1 phosphorylation was not observed when EphA4 was activated by ephrin-A5 in cultured cortical neurons, suggesting that Dab1 is localized in a different compartment in them. EphA4-induced Dab1 phosphorylation may occur under limited and/or pathological conditions in the brain.


Subject(s)
Neurons , Receptor, EphA4 , Reelin Protein , src-Family Kinases , Reelin Protein/metabolism , Phosphorylation , Animals , Receptor, EphA4/metabolism , Receptor, EphA4/genetics , src-Family Kinases/metabolism , Neurons/metabolism , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , HEK293 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Cells, Cultured , Ephrin-A5/metabolism , Ephrin-A5/genetics , Mice , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/metabolism , Rats
18.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000129

ABSTRACT

Tubulin polymerization-promoting protein2 (TPPP2) is one of the three paralogs of mammalian TPPP proteins. Its possible role in spermatogenesis is described in this narrative review. TPPP2 is expressed specifically in the male reproductive system, mainly in testes and sperm, and also in the epididymis. In testes, TPPP2 is exclusively expressed in elongating spermatids; in the epididymis, it is located in the middle piece of the sperm tail. TPPP2 is involved in spermiogenesis, in steps which are determinative for the formation and morphology of spermatids. The inhibition of TPPP2 decreases sperm motility (the curvilinear velocity of sperms), probably due to influencing mitochondrial energy production since TPPP2 knockout mice possess an impaired mitochondrial structure. There are data on the role of TPPP2 in various mammalian species: human, mouse, swine, and various ruminants; there is a significant homology among TPPP2s from different species. Experiments with Tppp2-/--mice show that the absence of TPPP2 results in decreased sperm count and serious dysfunction of sperm, including decreased motility; however, the in vitro capacitation and acrosome reaction are not influenced. The symptoms show that Tppp2-/--mice may be considered as a model for oligoasthenozoospermia.


Subject(s)
Spermatogenesis , Animals , Humans , Male , Sperm Motility/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Knockout , Mice , Spermatozoa/metabolism
19.
Braz J Med Biol Res ; 57: e13736, 2024.
Article in English | MEDLINE | ID: mdl-38985082

ABSTRACT

The present study utilized the spared nerve injury (SNI) to create a mouse model of depression to investigate the impact of esketamine on depressive-like behaviors, on the expression of PSD-95 and CRMP2 proteins, and on changes in neuronal dendritic spine plasticity in the prefrontal cortex (PFC). Depressive-like behavioral tests were performed 1 h after esketamine treatment, and the PFC tissues were obtained on the fourth day after completing the behavioral tests. Then, dendritic spine density and morphology in the PFC were measured using Golgi staining, and CRMP2 and PSD-95 proteins were obtained from PFC tissue by western blotting. The results of this study showed that esketamine significantly increased the immobility time in the forced swimming test and tail suspension test. In the open field test, esketamine increased the time spent in the open arms, the time spent in the central area, and the total distance covered. It also increased the protein expression levels of CRMP2 and PSD-95 in addition to the total and mature dendritic spine density of the PFC in SNI-depressed mice. Esketamine can significantly improve depression-like behaviors in SNI-depressed mice and promote an increase in dendritic spine density and maturation in the PFC. These effects may be associated with changes in CRMP2 and PSD-95 expression.


Subject(s)
Dendritic Spines , Depression , Disease Models, Animal , Ketamine , Neuronal Plasticity , Prefrontal Cortex , Animals , Prefrontal Cortex/drug effects , Ketamine/pharmacology , Neuronal Plasticity/drug effects , Male , Dendritic Spines/drug effects , Mice , Depression/drug therapy , Nerve Tissue Proteins/metabolism , Disks Large Homolog 4 Protein/metabolism , Intercellular Signaling Peptides and Proteins , Neurons/drug effects , Behavior, Animal/drug effects , Blotting, Western
20.
Cell Death Dis ; 15(7): 530, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048555

ABSTRACT

Colorectal carcinogenesis and progression are associated with aberrant alternative splicing, yet its molecular mechanisms remain largely unexplored. Here, we find that Microrchidia family CW-type zinc finger 2 (MORC2) binds to RRM1 domain of RNA binding motif protein 39 (RBM39), and RBM39 interacts with site 1 of pre-CDK5RAP2 exon 32 via its UHM domain, resulting in a splicing switch of cyclin-dependent kinase 5 regulatory subunit associated protein 2 (CDK5RAP2) L to CDK5RAP2 S. CDK5RAP2 S promotes invasion of colorectal cancer cells in vitro and metastasis in vivo. Mechanistically, CDK5RAP2 S specifically recruits the PHD finger protein 8 to promote Slug transcription by removing repressive histone marks at the Slug promoter. Moreover, CDK5RAP2 S, but not CDK5RAP2 L, is essential for the promotion of epithelial-mesenchymal transition induced by MORC2 or RBM39. Importantly, high protein levels of MORC2, RBM39 and Slug are strongly associated with metastasis and poor clinical outcomes of colorectal cancer patients. Taken together, our findings uncover a novel mechanism by which MORC2 promotes colorectal cancer metastasis, through RBM39-mediated pre-CDK5RAP2 alternative splicing and highlight the MORC2/RBM39/CDK5RAP2 axis as a potential therapeutic target for colorectal cancer.


Subject(s)
Alternative Splicing , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Neoplasm Metastasis , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Epithelial-Mesenchymal Transition/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Animals , Mice , Mice, Nude , Cell Line, Tumor , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Mice, Inbred BALB C , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , HCT116 Cells , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...