Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732109

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Subject(s)
Cell Differentiation , Melatonin , Mesenchymal Stem Cells , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cell Differentiation/drug effects , Cells, Cultured , Adipose Tissue/cytology , Neurons/cytology , Neurons/metabolism , Neurons/drug effects , Culture Media, Conditioned/pharmacology , Schwann Cells/cytology , Schwann Cells/metabolism , Schwann Cells/drug effects , Neurogenesis/drug effects , Adult , Nestin/metabolism , Nestin/genetics , Glial Fibrillary Acidic Protein/metabolism , Neuroglia/drug effects , Neuroglia/cytology , Neuroglia/metabolism , Synapsins/metabolism
2.
J Cancer Res Ther ; 20(1): 176-180, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554317

ABSTRACT

AIM: To evaluate and correlate the expression of HIF1-α and Nestin in tumor center and periphery of nonmetastatic, and recurrent oral squamous cell carcinoma (OSCC) and its association with vasculogenic mimicry. MATERIALS AND METHODS: About 60 histopathological proven cases of OSCC with proper tumor center and periphery were collected. Among them 25 are nonmetastatic, 25 metastatic, and 10 recurrent cases of OSCC. Immunohistochemical analysis of HIF, Nestin, and CD31/PAS (periodic acid Schiff) was done. RESULTS: Based on the extent of tumor cells stained, staining intensity and index score, expression of both HIF and Nestin was highly significant in periphery of metastatic OSCC with a P value of 0.003* and 0.001*. The total number of vessels expressed in nonmetastatic, metastatic, and recurrent OSCC was not significant but the overall expression of CD31/PAS was significant in the periphery of the tumor with a P value of 0.024*. Correlating the overall expression, HIF showed a positive relation with Nestin and CD31/PAS with a P value of 0.026* and 0.038* in nonmetastatic OSCC using Pearson's correlation coefficient analysis. CONCLUSION: Based on the above results hypoxia plays a vital role in cancer stem cells maintenance with the formation of vessel-like structures by tumor cells at an early stage of cancer development.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Hypoxia-Inducible Factor 1, alpha Subunit , Mouth Neoplasms/pathology , Neoplasm Recurrence, Local , Nestin/genetics , Squamous Cell Carcinoma of Head and Neck
3.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38396357

ABSTRACT

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Subject(s)
Acetylcysteine , Iron Overload , Oligopeptides , Animals , Male , Rats , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Caspases/metabolism , Claudins/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Dextrans/metabolism , Dextrans/pharmacology , Down-Regulation , Glutathione/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Iron/metabolism , Iron/pharmacology , Iron Overload/complications , Iron Overload/drug therapy , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Nestin/genetics , Nestin/metabolism , Nestin/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Up-Regulation , Oligopeptides/pharmacology , Heme Oxygenase-1/drug effects , Glial Fibrillary Acidic Protein/drug effects , Glial Fibrillary Acidic Protein/metabolism
4.
Hear Res ; 443: 108962, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38295585

ABSTRACT

Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.


Subject(s)
Cochlea , Vestibule, Labyrinth , Animals , Mice , Cochlea/metabolism , Hair Cells, Auditory/metabolism , Nestin/genetics , Nestin/metabolism , Saccule and Utricle/metabolism , Vestibule, Labyrinth/metabolism
5.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193536

ABSTRACT

Prolonged seizures can disrupt stem cell behavior in the adult hippocampus, an important brain structure for spatial memory. Here, using a mouse model of pilocarpine-induced status epilepticus (SE), we characterized spatiotemporal expression of Lin28a mRNA and proteins after SE. Unlike Lin28a transcripts, induction of LIN28A protein after SE was detected mainly in the subgranular zone, where immunoreactivity was found in progenitors, neuroblasts, and immature and mature granule neurons. To investigate roles of LIN28A in epilepsy, we generated Nestin-Cre:Lin28aloxP/loxP (conditional KO [cKO]) and Nestin-Cre:Lin28a+/+ (WT) mice to block LIN28A upregulation in all neuronal lineages after acute seizure. Adult-generated neuron- and hippocampus-associated cognitive impairments were absent in epileptic LIN28A-cKO mice, as evaluated by pattern separation and contextual fear conditioning tests, respectively, while sham-manipulated WT and cKO animals showed comparable memory function. Moreover, numbers of hilar PROX1-expressing ectopic granule cells (EGCs), together with PROX1+/NEUN+ mature EGCs, were significantly reduced in epileptic cKO mice. Transcriptomics analysis and IHC validation at 3 days after pilocarpine administration provided potential LIN28A downstream targets such as serotonin receptor 4. Collectively, our findings indicate that LIN28A is a potentially novel target for regulation of newborn neuron-associated memory dysfunction in epilepsy by modulating seizure-induced aberrant neurogenesis.


Subject(s)
Epilepsy , Status Epilepticus , Animals , Nestin/genetics , Pilocarpine/toxicity , Seizures/chemically induced , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Hippocampus , Neurogenesis
6.
PLoS One ; 18(12): e0296006, 2023.
Article in English | MEDLINE | ID: mdl-38117787

ABSTRACT

The Cre-loxP strategy for tissue-specific gene inactivation has become a widely employed tool in several research studies. Conversely, inadequate breeding and genotyping without considering the potential for non-specific Cre-recombinase expression may lead to misinterpretations of results. Nestin-Cre transgenic mice, widely used for the selective deletion of genes in neurons, have been observed to have an incidence of Cre-line germline recombination. In this study, we attempted to generate neuron-specific Glucagon-like peptide 1 receptor (Glp1r) knock-out mice by crossing mice harboring the Nestin-Cre transgene with mice harboring the Glp1r gene modified with loxP insertion, in order to elucidate the role of Glp1r signaling in the nervous system. Surprisingly, during this breeding process, we discovered that the null allele emerged in the offspring irrespective of the presence or absence of the Nestin-Cre transgene, with a high probability of occurrence (93.6%). To elucidate the cause of this null allele, we conducted breeding experiments between mice carrying the heterozygous Glp1r null allele but lacking the Nestin-Cre transgene. We confirmed that the null allele was inherited by the offspring independently of the Nestin-Cre transgene. Furthermore, we assessed the gene expression, protein expression, and phenotype of mice carrying the homozygous Glp1r null allele generated from the aforementioned breeding, thereby confirming that the null allele indeed caused a global knock-out of Glp1r. These findings suggest that the null allele in the NestinCre-Glp1r floxed breeding arose due to germline recombination. Moreover, we demonstrated the possibility that germline recombination may occur not only during the spermatogenesis at testis but also during epididymal sperm maturation. The striking frequency of germline recombination in the Nestin-Cre driver underscores the necessity for caution when implementing precise breeding strategies and employing suitable genotyping methods.


Subject(s)
Integrases , Semen , Animals , Male , Mice , Germ Cells/metabolism , Glucagon-Like Peptide 1 , Integrases/genetics , Integrases/metabolism , Mice, Knockout , Mice, Transgenic , Nestin/genetics , Recombination, Genetic , Semen/metabolism
7.
J Exp Clin Cancer Res ; 42(1): 317, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008717

ABSTRACT

BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.


Subject(s)
Melanoma , MicroRNAs , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , MicroRNAs/metabolism , Nestin/genetics , Nestin/metabolism , Phenotype , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
8.
Nature ; 623(7985): 157-166, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853118

ABSTRACT

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , Nestin/genetics , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/physiology , Reproducibility of Results , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Treatment Outcome , Tumor Microenvironment/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology
9.
Genome Med ; 15(1): 66, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667405

ABSTRACT

BACKGROUND: Human bone marrow stromal cells (BMSCs) are an easily accessible and expandable progenitor population with the capacity to generate neural cell types in addition to mesoderm. Lineage tracing studies in transgenic animals have indicated Nestin + BMSCs to be descended from the truncal neural crest. Single-cell analysis provides a means to identify the developmental origin and identity of human BMSC-derived neural progenitors when lineage tracing remains infeasible. This is a prerequisite towards translational application. METHODS: We attained transcriptomic profiles of embryonic long bone, adult human bone marrow, cultured BMSCs and BMSC-derived neurospheres. Integrated scRNAseq analysis was supplemented by characterization of cells during culture expansion and following provision of growth factors and signalling agonists to bias lineage. RESULTS: Reconstructed pseudotime upon the integrated dataset indicated distinct neural and osteogenic differentiation trajectories. The starting state towards the neural differentiation trajectory consisted of Nestin + /MKI67 + BMSCs, which could also be diverted towards the osteogenic trajectory via a branch point. Nestin + /PDGFRA + BMSCs responded to neurosphere culture conditions to generate a subpopulation of cells with a neuronal phenotype according to marker expression and gene ontogeny analysis that occupied the end state along the neural differentiation trajectory. Reconstructed pseudotime also revealed an upregulation of BMP4 expression during culture of BMSC-neurospheres. This provided the rationale for culture supplementation with the BMP signalling agonist SB4, which directed progenitors to upregulate Pax6 and downregulate Nestin. CONCLUSIONS: This study suggested BMSCs originating from truncal neural crest to be the source of cells within long bone marrow possessing neural differentiation potential. Unravelling the transcriptomic dynamics of BMSC-derived neural progenitors promises to enhance differentiation efficiency and safety towards clinical application in cell therapy and disease modelling.


Subject(s)
Bone Marrow , Regenerative Medicine , Adult , Animals , Humans , Nestin/genetics , Osteogenesis , Neurons
10.
Genes Cells ; 28(10): 679-693, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584256

ABSTRACT

The evolutionally conserved Cdc7 kinase plays crucial roles in initiation of DNA replication as well as in other chromosomal events. To examine the roles of Cdc7 in brain development, we have generated mice carrying Cdc7 knockout in neural stem cells by using Nestin-Cre. The Cdc7Fl/Fl NestinCre mice were born, but exhibited severe growth retardation and impaired postnatal brain development. These mice exhibited motor dysfunction within 9 days after birth and did not survive for more than 19 days. The cerebral cortical layer formation was impaired, although the cortical cell numbers were not altered in the mutant. In the cerebellum undergoing hypoplasia, granule cells (CGC) decreased in number in Cdc7Fl/F l NestinCre mice compared to the control at E15-18, suggesting that Cdc7 is required for DNA replication and cell proliferation of CGC at mid embryonic stage (before embryonic day 15). On the other hand, the Purkinje cell numbers were not altered but its layer formation was impaired in the mutant. These results indicate differential roles of Cdc7 in DNA replication/cell proliferation in brain. Furthermore, the defects of layer formation suggest a possibility that Cdc7 may play an additional role in cell migration during neural development.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Animals , Mice , Cell Cycle Proteins/metabolism , Cerebellum/metabolism , DNA Replication , Nestin/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
11.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445785

ABSTRACT

Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, ß-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, ß-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.


Subject(s)
Histones , Tubulin , Rats , Animals , Histones/metabolism , Nestin/genetics , Nestin/metabolism , Cell Differentiation , Tubulin/genetics , Tubulin/metabolism , Stem Cells/metabolism , Neurogenesis , Dental Papilla/metabolism , Cells, Cultured , Osteogenesis
12.
Sci Rep ; 13(1): 12004, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491480

ABSTRACT

Restoration of nerve tissue remains highly challenging, mainly due to the limited regeneration capacity of the nervous system and the development of fibrosis. This limitation necessitates designing new nerve guidance channel to promote nerve repairing. In this study, we developed a novel core/shell conduit to induce PC12 differentiation. Co-electrospinning method was utilized to produce a fibrous shell containing polycaprolactone/polyvinylidene fluoride PCL/PVDF, gelatin and polyaniline/graphene (PAG) nanocomposite. The core section of the conduit was filled with chitosan-gelatin hydrogel containing PAG and ZnO nanoparticles. Such conduit shows antibacterial activity, electrical conductivity and piezoelectric property. The effect of such engineered conduit on PC12 differentiation was investigated by analyzing differentiation markers Nestin and microtubule-associated protein 2 (MAP2) through immunocytochemistry and PCR-RT techniques. The result revealed that such conduit could significantly induce Nestin and MAP2 gene expression in the PC12 cells and, thus, it is a viable option for effective cell differentiation and nerve regeneration.


Subject(s)
Gelatin , Tissue Scaffolds , Rats , Animals , Nestin/genetics , Gelatin/chemistry , PC12 Cells , Tissue Scaffolds/chemistry , Nerve Regeneration/physiology , Cell Differentiation , Sciatic Nerve/physiology
13.
Am J Physiol Cell Physiol ; 325(2): C496-C508, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37458435

ABSTRACT

Fibroblast progenitor cells migrate to the endocardial region during cardiogenesis, and the migration of ventricular fibroblasts to the ischemically damaged region of the infarcted adult heart is a seminal event of reparative fibrosis. The intermediate filament protein nestin is implicated in cell migration and expression identified in a subpopulation of scar-derived myofibroblasts. The present study tested the hypothesis that fibroblast progenitor cells express nestin, and the intermediate filament protein drives the migratory phenotype of ventricular fibroblasts. Transcription factor 21 (Tcf21)- and Wilms tumor 1 (WT1)-fibroblast progenitor cells identified in the epicardial/endocardial regions of the E12.5- to E13.5-day embryonic mouse heart predominantly expressed nestin. Nuclear Tcf21/WT1 staining was identified in neonatal rat ventricular fibroblasts (NNVFbs), and a subpopulation coexpressed nestin. Nuclear Tcf21/WT1 expression persisted in adult rat ventricular fibroblasts, whereas nestin protein levels were downregulated. Nestin-expressing NNVFbs exhibited a unique phenotype as the subpopulation was refractory to cell cycle reentry in response to selective stimuli. Nestin(-)- and nestin(+)-scar-derived rat myofibroblasts plated in Matrigel unmasked a migratory phenotype characterized by the de novo formation of lumen-like structures. The elongated membrane projections emanating from scar myofibroblasts delineating the boundary of lumen-like structures expressed nestin. Lentiviral short-hairpin RNA (shRNA)-mediated nestin depletion inhibited the in vitro migratory response of NNVFbs as the wound radius was significantly larger compared with NNVFbs infected with the empty lentivirus. Thus, nestin represents a marker of embryonic Tcf21/WT1(+)-fibroblast progenitor cells. The neonatal rat heart contains a distinct subpopulation of nestin-immunoreactive Tcf21/WT1(+) fibroblasts refractory to cell cycle reentry, and the intermediate filament protein may preferentially facilitate ventricular fibroblast migration during physiological/pathological remodeling.NEW & NOTEWORTHY Tcf21/WT1(+)-fibroblast progenitor cells of the embryonic mouse heart predominantly express the intermediate filament protein nestin. A subpopulation of Tcf21/WT1(+)-neonatal rat ventricular fibroblasts express nestin and are refractory to selective stimuli influencing cell cycle reentry. Scar-derived myofibroblasts plated in Matrigel elicit the formation of lumen-like structures characterized by the appearance of nestin(+)-membrane projections. Lentiviral shRNA-mediated nestin depletion in a subpopulation of neonatal rat ventricular fibroblasts suppressed the migratory response following the in vitro scratch assay.


Subject(s)
Cicatrix , Fibroblasts , Rats , Mice , Animals , Nestin/genetics , Nestin/metabolism , Cicatrix/metabolism , Cell Movement , Fibroblasts/metabolism , RNA, Small Interfering/metabolism
14.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298126

ABSTRACT

Reactive gliosis is a hallmark of chronic degenerative diseases of the retina. As gliosis involves macroglia, we investigated their gliotic response to determine the role of S100ß and intermediate filaments (IFs) GFAP, vimentin, and nestin during tissue repair in a laser-induced model of retinal degeneration. We validated the results with human retinal donor samples. Experiments were performed in zebrafish and mice using an argon laser (532 nm) to induce focal lesions in the outer retina. At different time points following injury induction, the kinetics of retinal degeneration and regeneration were assessed using hematoxylin and eosin staining (H&E). Immunofluorescence was performed to evaluate Müller cell (GS) and astrocyte (GFAP) injury response and to distinguish between both cell types. Additionally, staining was performed in human retinal sections containing drusen. Focal laser treatment elevated the expression of gliotic markers in the area of the damage, which was associated with increased expression of S100ß, GFAP, vimentin, and nestin in mice and humans. In zebrafish, we detected S100ß at the first time point, but not GFAP or nestin. Double-positive cells with the selected glia markers were detected in all models. However, in zebrafish, no double-positive GFAP/GS cells were found on days 10 and 17, nor were S100ß/GS double-positive cells found on day 12. Macroglia cells showed a different pattern in the expression of IFs in degenerative and regenerative models. In particular, S100ß may prove to be a target for suppressing chronic gliosis in retinal degeneration.


Subject(s)
Retinal Degeneration , Animals , Mice , Humans , Retinal Degeneration/pathology , Astrocytes/metabolism , Vimentin/genetics , Vimentin/metabolism , Nestin/genetics , Nestin/metabolism , Gliosis/pathology , Zebrafish/metabolism , Glial Fibrillary Acidic Protein/metabolism , Retina/metabolism , Neuroglia/metabolism , Lasers , S100 Calcium Binding Protein beta Subunit/metabolism
15.
Cells Dev ; 175: 203858, 2023 09.
Article in English | MEDLINE | ID: mdl-37271245

ABSTRACT

Coil-coiled domain containing 85c (Ccdc85c) is a causative gene for congenital hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. We established Ccdc85c knockout (KO) rats and investigated the roles of CCDC85C and intermediate filament protein expression, including nestin, vimentin, GFAP, and cytokeratin AE1/AE3 during the lateral ventricle development in KO rats to evaluate the role of this gene. We found altered and ectopic expression of nestin and vimentin positive cells in the wall of the dorso-lateral ventricle in the KO rats during development from the age of postnatal day (P) 6, whereas both protein expression became faint in the wild-type rats. In the KO rats, there was a loss of cytokeratin expression on the surface of the dorso-lateral ventricle with ectopic expression and maldevelopment of ependymal cells. Our data also revealed disturbed GFAP expression at postnatal ages. These findings indicate that lack of CCDC85C disrupts the proper expression of intermediate filament proteins (nestin, vimentin, GFAP, and cytokeratin), and CCDC85C is necessary for normal neurogenesis, gliogenesis, and ependymogenesis.


Subject(s)
Hydrocephalus , Rats , Animals , Nestin/genetics , Vimentin/genetics , Vimentin/metabolism , Hydrocephalus/genetics , Hydrocephalus/metabolism , Neurogenesis/genetics , Keratins
16.
Respir Res ; 24(1): 157, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316833

ABSTRACT

BACKGROUND: The recruitment of the actin-regulatory proteins cortactin and profilin-1 (Pfn-1) to the membrane is important for the regulation of actin cytoskeletal reorganization and smooth muscle contraction. Polo-like kinase 1 (Plk1) and the type III intermediate filament protein vimentin are involved in smooth muscle contraction. Regulation of complex cytoskeletal signaling is not entirely elucidated. The aim of this study was to evaluate the role of nestin (a type VI intermediate filament protein) in cytoskeletal signaling in airway smooth muscle. METHODS: Nestin expression in human airway smooth muscle (HASM) was knocked down by specific shRNA or siRNA. The effects of nestin knockdown (KD) on the recruitment of cortactin and Pfn-1, actin polymerization, myosin light chain (MLC) phosphorylation, and contraction were evaluated by cellular and physiological approaches. Moreover, we assessed the effects of non-phosphorylatable nestin mutant on these biological processes. RESULTS: Nestin KD reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Moreover, contractile stimulation enhanced nestin phosphorylation at Thr-315 and the interaction of nestin with Plk1. Nestin KD also diminished phosphorylation of Plk1 and vimentin. The expression of T315A nestin mutant (alanine substitution at Thr-315) reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Furthermore, Plk1 KD diminished nestin phosphorylation at this residue. CONCLUSIONS: Nestin is an essential macromolecule that regulates actin cytoskeletal signaling via Plk1 in smooth muscle. Plk1 and nestin form an activation loop during contractile stimulation.


Subject(s)
Actins , Cortactin , Humans , Nestin/genetics , Vimentin , Cortactin/genetics , Cytoskeleton
17.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982785

ABSTRACT

Endogenous neural stem cells (eNSCs) in the adult brain, which have the potential to self-renew and differentiate into functional, tissue-appropriate cell types, have raised new expectations for neurological disease therapy. Low-intensity focused ultrasound (LIFUS)-induced blood-brain barrier modulation has been reported to promote neurogenesis. Although these studies have reported improved behavioral performance and enhanced expression of brain biomarkers after LIFUS, indicating increased neurogenesis, the precise mechanism remains unclear. In this study, we evaluated eNSC activation as a mechanism for neurogenesis after LIFUS-induced blood-brain barrier modulation. We evaluated the specific eNSC markers, Sox-2 and nestin, to confirm the activation of eNSCs. We also performed 3'-deoxy-3'[18F] fluoro-L-thymidine positron emission tomography ([18F] FLT-PET) to evaluate the activation of eNSCs. The expression of Sox-2 and nestin was significantly upregulated 1 week after LIFUS. After 1 week, the upregulated expression decreased sequentially; after 4 weeks, the upregulated expression returned to that of the control group. [18F] FLT-PET images also showed higher stem cell activity after 1 week. The results of this study indicated that LIFUS could activate eNSCs and induce adult neurogenesis. These results show that LIFUS may be useful as an effective treatment for patients with neurological damage or neurological disorders in clinical settings.


Subject(s)
Blood-Brain Barrier , Neural Stem Cells , Humans , Nestin/genetics , Neurogenesis , Brain
18.
Brain Tumor Pathol ; 40(2): 109-123, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36892668

ABSTRACT

Pilocytic astrocytomas (PAs) are benign tumors. However, clinically aggressive PAs despite benign histology have been reported, and histological and molecular risk factors for prognosis have not been elucidated. 38 PAs were studied for clinical, histological, and molecular factors, including tumor location, extent of resection, post-operative treatment, glioma-associated molecules (IDH1/2, ATRX, BRAF, FGFR1, PIK3CA, H3F3A, p53, VEGF, Nestin, PD-1/PD-L1), CDKN2A/B deletion, and chromosomal number aberrations, to see if there is any correlation with patient's progression-free survival (PFS). Brainstem/spinal location, extent of resection and post-operative treatment, and VEGF-A, Nestin and PD-L1 expression, copy number gain of chromosome 7q or 19, TP53 mutation were significantly associated with shorter PFS. None of the histological parameters was associated with PFS. Multivariate analyses demonstrated that high Nestin expression, gain of 7q or 19, and extent of removal were independently predictive for early tumor recurrence. The brainstem/spinal PAs appeared distinct from those in the other sites in terms of molecular characteristics. Clinically aggressive PAs despite benign histology exhibited high Nestin expression. Brainstem/spinal location, extent of resection and some molecular factors including Nestin expression and gains of 7q and 19, rather than histological parameters, may be associated with early tumor recurrence in PAs.


Subject(s)
Astrocytoma , Brain Neoplasms , Humans , B7-H1 Antigen/metabolism , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , Nestin/genetics , Nestin/metabolism , Astrocytoma/pathology , Brain Stem/metabolism , Brain Stem/pathology
19.
Am J Physiol Cell Physiol ; 325(2): C406-C419, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36745530

ABSTRACT

The present study tested the hypothesis that protein kinase C-α (PKC-α) recruitment in the presence of the p38α/ß MAPK inhibitor SB203580 facilitated the appearance and cell cycle re-entry of nestin(+)-neonatal rat ventricular cardiomyocytes (NNVMs) and induced a transcript profile delineating a proliferative phenotype. Phorbol 12,13-dibutyrate (PDBu) treatment did not induce de novo nestin expression or increase the cell cycle re-entry of 1-day-old NNVMs but significantly increased runt-related transcription factor 1 (Runx1) and p16 cell cycle inhibitor (CDKN2a) mRNA levels and downregulated epithelial cell transforming 2 (ECT2) mRNA expression. SB203580 administration to PDBu-treated NNVMs induced de novo nestin expression, preferentially increased the density (normalized to 500 NNVMs) of nestin(+)-NNVMs that incorporated 5-bromo-2'-deoxyuridine (PDBu, 1.4 ± 3 vs. PDBu/SB203580, 128 ± 34; n = 5 independent litters), significantly inhibited CDKN2a and Runx1 mRNA upregulation and reversed ECT2 mRNA downregulation. PDBu treatment of NNVMs reduced PKC-α, protein kinase-δ (PKC-δ) and protein kinase-ε (PKC-ε) protein levels and GF109203X (conventional PKC isoform inhibitor) selectively attenuated PKC-α protein downregulation. GF109203X administration to PDBu/SB203580-treated NNVMs significantly reduced the density of nestin(+)-NNVMs that incorporated 5-bromo-2'-deoxyuridine (PDBu/SB203580/GF109203X, 40 ± 46; n = 5). Moreover, GF109203X/PDBu/SB203580 treatment unmasked the predominant appearance of a separate NNVM population that incorporated 5-bromo-2'-deoxyuridine (PDBu/SB203580/GF109203X, 192 ± 42; n = 5) delineated by the absence of de novo nestin expression. Sotrastaurin (conventional/novel PKC isoform inhibitor) administration to PDBu/SB203580-treated NNVMs significantly attenuated the density of nestin(+)-NNVMs (PDBu/SB203580/sotrastaurin, 8 ± 10; n = 4) and nestin(-)-NNVMs (PDBu/SB203580/sotrastaurin, 64 ± 30; n = 4) that incorporated 5-bromo-2'-deoxyuridine. These data reveal that the neonatal rat heart contains at least two separate populations of NNVMs that re-enter the cell cycle and the preferential appearance of nestin(+)- or nestin(-)-NNVMs is driven by distinct PKC isoforms in the presence of SB203580.NEW & NOTEWORTHY The appearance of nestin(+)-neonatal rat ventricular cardiomyocytes that re-entered the cell cycle following phorbol ester stimulation in the presence of p38α/ß MAPK inhibitor SB203580 was associated with the inhibition of Runx1 and CDKN2a mRNA upregulation. PKC-α selectively induced the cell cycle re-entry of nestin(+)-neonatal rat ventricular cardiomyocytes. Pharmacological inhibition of PKC-α with concomitant p38α/ß MAPK suppression unmasked the cell cycle re-entry of a second population of neonatal rat ventricular cardiomyocytes in the absence of nestin expression.


Subject(s)
Myocytes, Cardiac , Protein Kinase C , Rats , Animals , Protein Kinase C/metabolism , Myocytes, Cardiac/metabolism , Animals, Newborn , Nestin/genetics , Nestin/metabolism , Core Binding Factor Alpha 2 Subunit , Bromodeoxyuridine , Cell Cycle , Protein Isoforms , RNA, Messenger/genetics , Phorbol 12,13-Dibutyrate/pharmacology
20.
Br J Haematol ; 200(5): 643-651, 2023 03.
Article in English | MEDLINE | ID: mdl-36382360

ABSTRACT

Nestin is an intermediate filament protein, which was originally detected in neuroepithelial stem cells. Besides its use as a phenotypic marker of mesenchymal stem cells in the hematopoeitic stem cell niche, the functional interpretation of nestin+ cells remains elusive. We investigated the cellular expression of nestin in bone marrow trephine biopsies of MPN patients, following myeloablation at a stage of hypocellularity during early regeneration. Here, nestin is highly expressed in mature osteocytes, arteriolar endothelial and perivascular cells and small capillaries within the bone marrow space, but not in sinusoid lining cells. This is in stark contrast to nestin expression pattern in myeloproliferative neoplasms that show hypercellularity due to oncogenic driver mutations. Here, nestin is expressed exclusively in endothelial cells of arterioles, but not in osteocytes or small capillaries. Thus, the pattern of nestin expression following myeloablation inversely correlates with cellularity in the bone marrow. This nestin expression pattern is mimicking early postnatal transcriptional programming during bone marrow development. We show that nestin expression in osteocytes occurs across different species following transplant and also in bone marrow metastasis.


Subject(s)
Bone Marrow Neoplasms , Bone Marrow , Humans , Nestin/genetics , Nestin/metabolism , Bone Marrow/metabolism , Endothelial Cells/metabolism , Osteocytes/metabolism , Bone Marrow Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...